高等數學導數公式誰有哇?給我一份謝謝

時間 2021-07-09 18:15:24

1樓:匿名使用者

1.y=c(c為常數) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

中g(x)看作整個變數,而g'(x)中把x看作變數』

2.y=u/v,y'=(u'v-uv')/v^2

3.y=f(x)的反函式是x=g(y),則有y'=1/x'

證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。

用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用複合函式的求導給予證明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能匯出導函式的,必須設一個輔助的函式β=a^⊿x-1通過換元進行計算。由設的輔助函式可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,當a=e時有y=e^x y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,當a=e時有y=lnx y'=1/x。

這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以

6.類似地,可以匯出y=cosx y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在對雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的複合函式求導時通過查閱導數表和運用開頭的公式與

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

2樓:匿名使用者

c'=0(c為常數)

(x^a)'=ax^(a-1),a為常數且a≠0(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

(cotx)'=-(cscx)^2

(cscx)'=-csxcotx

(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)(shx)'=chx

(chx)'=shx

剛剛接觸高等數學,怎樣理解導數,導數的公式有哪些,有誰幫我詳細講解一下,謝謝!

3樓:匿名使用者

從物理的角度看,位移的瞬時變化率(導數)是速度,速度的導數是加速度。

導數的公式請看課本或數學手冊。

4樓:匿名使用者

看教科書啊!導數是......時.......的極限。

導數公式一百餘,常用的就不到二十個,慢慢記憶。

高數常見函式求導公式

5樓:我是一個麻瓜啊

高數常見函式求導公式如下圖:

求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。

在一個函式存在導數時,稱這個函式可導或者可微分。可導的函式一定連續。不連續的函式一定不可導。

6樓:

這是同濟第5版高數上的,與6版應該一樣吧

7樓:匿名使用者

同濟的我沒有,我有以下幾個,不知道你用著怎麼樣,試試吧,根號打不出來,自己廢下心拼下吧,嘻嘻

1.(c)`=0 (c為常數)2.(x^a)`=ax^(a-1) (a∈r) 3.(a^x)`=a^(x)lna (a≠1且a>0)

4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x

7.(sinx)`=cosx 8.(cosx)`= -sinx 9.

(tanx)`=1/cos^2x=sec^2x

10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx

13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)

15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)

8樓:匿名使用者

^1.(c)`=0 (c為常數)2.(x^a)`=ax^(a-1) (a∈r) 3.(a^x)`=a^(x)lna (a≠1且a>0)

4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x

7.(sinx)`=cosx 8.(cosx)`= -sinx 9.

(tanx)`=1/cos^2x=sec^2x

10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx

13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)

15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)

9樓:星辰

高等數學常見函式導公式高等數學使皮鞋難學對美學克但是它的實用價值和科學價值很高

大一高等數學導數與微分的應用,大學課程《高等數學》導數與微分課後習題答案求過程

我毛遂自薦下吧 不過你題目太多 簡單寫下 1 求導得x 0 2 還是求導 x 0極小 x 2極大 3 求兩次導 b 0,帶點入 c 1 4 用定義 e 0.01 1 0.011 b2 d 3 a4 a a 3 2,b 9 25 a 風力發電張學彬 正弦定理a sina b sinb c sinc 2...

微積分萊布尼茨公式,高等數學大一萊布尼茨公式是什麼意思

愛衣 是定積分那個嗎 很簡單啊,就是求出被積函式然後把上下限代進去求結果積分原來就是求面積用的 所以那個累加公式就是把一個不規則圖形無限分割成小矩形或梯形或扇形等等可以求出面積的形狀,然後疊加起來,用一個近似值表達積分。而當無限細分時,近似值的極限就是積分準確值,這樣就把積分問題轉化成了極限問題。實...

高等數學大一里的泰勒公式主要可以解決哪些問題?函式凹凸性又能

她是我的小太陽 大一上學期期末高數複習要點 第一章 1 極限 夾逼準則 2 連續 學會用定義證明一個函式連續,判斷間斷點型別 第二章 1 導數 學會用定義證明一個函式是否可導 注 連續不一定可導,可導一定連續 2 求導法則 背 3 求導公式 也可以是微分公式 第三章 1 微分中值定理 一定要熟悉並靈...