大學基礎物理學和高中的物理區別大嗎

時間 2021-08-30 10:37:12

1樓:三建設行的麻咪

主要內容差別不大,就是多了相對論這一塊,多了轉動的內容。主要內容還是運動學 力學 量子力學 光學 電磁學等這些內容 但是難度肯定比高中難度大我個人認為大學基礎物理和高中物理最大的區別是微積分知識的運用。高中很多計算都是理想的,沒有用到微積分知識,在大學階段,就要用到微積分計算

請問張三慧的《大學基礎物理學》和《大學物理學》有什麼區別?【20分】

2樓:徭凌柏

《大學基礎物理學》是在高中物理的基礎上系統而又嚴謹地講述了基本的物理原理。內容的安排總體上是按傳統的力、熱、電、光、量子物理的順序。所以「固守」此傳統,是因為到目前為止,物理學的發展並沒有達到可能和必要在基礎物理教學上改變這一總體系的程度。

書中具體內容主要是經典物理基本知識,但同時也包含了許多現代物理,乃至一些物理學前沿的理論和實驗以及它們在現代技術中應用的知識。本書還開闢了「今日物理趣聞」專欄,簡要地介紹瞭如基本粒子、宇宙發展、能源與環境、超導、全息等課題,以開闊學生視野,激發其學習興趣,並啟迪其創造性。 而《大學物理學》以培養人才的知識、能力和科學素質為出發點,重新設計大學物理課程的內容體系,注意加強對近代物理的介紹,反映物理學的前沿,力圖用近代物理的觀點重組經典物理內容,並注重介紹物理學的思想方法及其在工程中的實際應用。

簡單點說《大學物理學》比大學基礎物理學要難一些

大學課程中 大學物理學、基礎物理學、普通物理學 有什麼區別

3樓:匿名使用者

1、難度不同

大學物理學難度高。

基礎物理學難度最低。

普通物理學難度適中。

2、涉及內容不同

大學物理學涉及力學、熱學、電磁學。

基礎物理學涉及剛體的轉動、流體力學、振動學、波動學、相對論、氣體動理論、靜電場、靜電場中的導體和電介質、直流電路、電流的磁場、電磁感應、光的干涉、光的衍射、光的偏振、光的吸收與散射、光的量子性、量子力學基礎、鐳射、原子核與粒子物理。

普通物理學涉及力和運動、剛體和流體的運動、相對論基礎、氣體動理論、熱力學基礎及靜止電荷的電場等內容。

4樓:匿名使用者

顧名思義,大學物理

,就是那些非物理專業的人需要學習的物理課,就像高中文科班學的物理一樣,不是很重要,也很簡單。基礎物理學是那些理科學校學習的物理基礎,雖說叫基礎,但是很難。普物是指那些工科學校學習的物理,相對要簡單些。

總的來講基礎物理是最難的,但是一般人都不會學。

5樓:匿名使用者

大學裡最簡單的應該是物理學概論,然後是文科物理,大學物理,普通物理學,費曼物理學。講的內容也不完全一樣,按難度來的。應該明白了吧。普通物理學以後是物理系學的。

6樓:匿名使用者

只要不是物理專業的,都差不多。都是高中物理的深入,加了微積分思想。

物理專業的就分的更細了。有力學,光學,熱學,電磁學都稱為基礎物理學科。

更高階的物理學科有傳說中的四大力學:電動力學,量子力學,理論力學,熱力學統計物理,等等

7樓:匿名使用者

大學物理學、基礎物理學、普通物理學是不同的名稱,內容範圍相同,難度其實不同學校會不同,沒有規定誰會比誰更難

8樓:開心囝

這些都是非物理學專業的學生學的,物理學專業要做普物理實驗,基礎物理比較詳盡一些但是難度不大。

高中物理和大學物理有什麼區別?和聯絡?

9樓:匿名使用者

中國的教育以脫節為特點.如果說你高中物理學的不好,不會特別影響大學物理.但是大學物理確實是高中物理在各個方面的延伸.

不同的專業對於物理的能力要求是不一樣的.高中的物理在教學方面還是不夠嚴謹的,但是不能夠說錯誤,因為都是特殊情況.大學的物理學是真正一般的物理學,現象也從最一般開始,這主要是因為數學工具的應用.

這也更加符合物理學的發展規律. 對於一般的工科專業: 真正的物理課程只有一門,那就是《大學物理》,一般情況下會在一年內學完.

涵蓋的面積比較廣泛,但是不深入,可以說就是高中的基本知識的延伸,但是角度不同,不能再用高中那種特殊的眼光去分析問題,因為問題在這裡變得更加一般。主要的數學工具就是微積分。高等數學並不等於微積分,但微積分是主體。

如果你只用學習《大學物理》,只要高等數學不是很差,有一點物理的思想就可以了。畢竟《大學物理》中的東西還是比較淺顯的,很多東西不會去深究,只是一般的概念普及。(樓上把大學物理說成是計算就很欠妥了) 如果你的專業是物理方向的,那麼你會面對很多課程,主要的有幾門:

力學:就是我們所說的四大力學中的經典力學,也可以說是以牛頓理論為基礎的力學學科。力學涵蓋的東西也是比較多的,除了我們熟知的質點運動學、動力學,還有質點系的運動學、動力學,在這中間你會接觸到一些新的概念,位移、向量疊加都是常見的。

要特別注意物理模型的微積分意義,對於參考系也會有更為深入的討論,你會知道慣性系、非慣性系、伽利略變換等。還有剛體力學(這是新東西),牽扯到角動量、轉動慣量等新的物理量。能量、動量的相關定理(包括質點的能量、動量,剛體的旋轉動量、能量),波、振動的描述和能量,流體力學,還有一點材料力學,如剪下、拉伸、扭轉。

最後有一些關於相對論的簡介,洛侖茲變換等。 電磁學: 電磁學顧名思義是普通物理中的很重要的一門學科,它主要是研究物質的電磁性質。

像庫侖定律這樣的定律已經很熟悉了,但是在這裡你會看到新的表述形式,會以更加基本的量來表示。其中會有對於電荷的更深入的討論,向高斯定理這樣的定理是很重要的,可以說是電學部分的基礎,進而你會瞭解到,高斯定理不單單是物理定理,是一種數學的抽象。掌握這個模型會讓你受益終身。

電學方面還有電介質的電學性質,又會接觸到一些新概念。除此之外還有電路方面的知識,比較起《電路》課程相當淺顯了,主要是基爾霍夫電路定理,這也是以後的電路知識的基礎。磁學方面的學習可以類比電學,其中有像畢奧-薩法爾定理,安培環路定理,都可以類比高斯定理進行學習。

還有磁介質磁學。還有電磁感應方面的知識,和高中的沒有太大出入,但是模型要完整的多,也更一般。 光學:

光學在高中當中學的可能是比較少的,有一般也是幾何光學。而物理專業的光學相比較而言是比較廣泛的,有波動光學,幾何光學,光學儀器,光的偏振(比高中要深入得多),量子光學等,貫穿著整個光學的發展。有的東西會比較新,以前也沒有聽說過,像菲涅爾半波帶,光學儀器中的費馬原理等,都需要耐心去掌握。

光學主要的特點就是知識碎,公式多,但是理解起來並不難。 熱學: 熱學可以說是普通物理漸漸從巨集觀轉向微觀的一個轉折點,但是普通物理學中的熱學(不是熱力學統計物理)。

主要是研究熱現象,而非本質,很多理論和公式只能夠解釋現象,但對於本質來講並不完全正確。熱學研究的是一種體系(主要是平衡體系),一種大量的微觀粒子參與的行為。這就需要概率統計作為其數學工具。

熱學中的基礎就是理想氣體的狀態方程,還有熱力學第一定律,第二定律,熱力學系統的表述,到後面還有像輸運,麥克斯韋速度(速率)分佈、克勞修斯不等式等重要的知識,分別涵蓋在各個章節中。熱學的難點在於不好建立模型,因為比較難想象,而且同樣公式多,知識碎。但所幸的是和高中的知識幾乎沒什麼聯絡(有也是在前面的皮毛部分)。

原子物理學(近代物理): 原子物理學是物理專業課程開始告別普通物理的開始,因為真正的把研究物件從巨集觀轉向微觀。同樣是沿著物理學的發展歷程,你可以看到很多種關於解釋原子尺度的粒子行為的物理理論。

其中像很多很酷的理論:玻爾的原子模型、薛定諤方程、德布洛意波、光電效應、能級、能譜、核物理等接近前沿理論的知識。當然,有些東西是錯誤的,但是也同樣為後來的量子力學的誕生奠定了基礎。

在學習原子物理學的時候,或許更加應該帶著問題,因為上面提到的一些理論與實驗,都是經典物理向相對論、量子力學過渡那一個時間段提出的,有很大的啟發性,也可以幫助你找到物理學的方向。其中,量子力學導論部分的知識是重點(楊福家版)。 除此之外,你還會在高年級接觸到電動力學、熱力學統計物理、量子力學、固體物理等比較深的科目了。

但如果你在大

一、大二打好基礎,這些科目也不會特別費勁。(這些科目的知識在工科的《大學物理》中都十分淺顯,有的也不會找到)

大學物理學,應用物理學和工程物理學的區別

10樓:孤獨症患者

一、專業側重點不同

工程物理學是文理院校設立的物理系專業,最為常見,主要偏重於物理的基礎理論教育。

應用物理學是工科院校設立的物理系專業,偏重於物理的應用教育。

二、培養人才不同

應用物理學培養在物理學、郵電通訊、航空航天、能源開發、計算機技術及應用、光電子技術、醫療保健、自動控制等相關高校技術領域從事科研、教學、技術開發與應用、管理等工作的高階專門人才。

工程物理學培養光學,量子物理,材料科學,應用物理學,奈米技術,微型品製造,力學工程,電工程,生物物理,控制理論,空氣動力學,能量,固態物理人才。

三、就業前景不同

應用物理學該專業的人才雖然就業面比較廣,但是往往競爭力不夠強,在競爭最好公司的研發部門中,處於下風。

工程物理學職業道路寬廣,可從事電子、電機、品質控制、市場推廣、程式編寫及教育等行業。

四、主幹學科不同

應用物理學的主幹學科為數學分析、高等代數、高等數學、線性代數、概率論與數理統計、普通物理學(包括力學、熱學、光學、電磁學、原子物理學)、理論物理(包括理論力學、電動力學、熱力學與統計力學、量子力學)、數學物理方法。

工程物理學的主幹學科為熱力學專論,傳熱學專論,工程流體力學專論,現代實驗技術,現代數學方法概論,非線性動力系統,非定常及不穩定兩相流動,高效換熱器,計算傳熱學進展及其應用等。

11樓:暴走少女

一、專業不同

1、應用物理學

本專業主要培養掌握物理學基本理論與方法,具有良好的數學基礎和基本實驗技能,掌握電子技術、計算機技術、光纖通訊技術、生物醫學物理等方面的應用基礎知識、基本實驗方法和技術,能在物理學等相關高校技術領域從事科研、教學、技術開發與應用、管理等工作的高階專門人才。

2、工程物理

是物理、工程和數學三種學科結合的學科。基礎物理和要解決的問題及工程技巧相結合,使工程物理有廣泛的應用。這門交叉學科是為技術領域內繼續發明而設定。

二、培養目標不同

1、應用物理學

本專業培養能適應我國社會主義現代化建設需要的,德智體全面發展的,掌握物理學的基本理論與方法,能在物理學或相關的科學技術領域從事科研、教學、技術開發和相關的管理工作的高階專門人才。

本專業旨在提供一種高層次的素質教育而不僅僅是一種專業教育,使學生掌握基本的物理應用的理論與方法,掌握用計算機解決問題的基本技能。

接受物理應用薰陶的優勢畢業生可以適應多方面的社會需求,良好的自學能力使學生只要經過有關的業務培訓,就能成為各方面的骨幹。

2、工程物理學

培養有堅實而寬廣的工程熱物理的系統基礎理論知識,熟知並能熟練運用相關學科的基礎理論和新技術開展本學科的科研與應用開發工作,深入瞭解學科的進展、動向和最新發展前沿的高階工程技術人才。

三、主要課程不同

1、應用物理學

數學分析、高等代數、高等數學、線性代數、概率論與數理統計、普通物理學(包括力學、熱學、光學、電磁學、原子物理學)、理論物理(包括理論力學、電動力學、熱力學與統計力學、量子力學)、數學物理方法。

2、工程物理學

熱力學專論,傳熱學專論,工程流體力學專論,現代實驗技術,現代數學方法概論,非線性動力系統,非定常及不穩定兩相流動,高效換熱器,計算傳熱學進展及其應用等。

高中物理學習,高中物理學習

主要還是多看書多理解啦 公式很重要的,一定要多記憶,但是要在理解的基礎上加以記憶 其實高中的物理和初中的物理相差很多,千萬千萬不能覺得初中物理好了就萬事大吉等著吃老本,那樣是會造成高中物理杯具的哦 同樣,大學的物理也跟高中的物理很不相同,千萬不要吃老本呢!物理很大程度上都是練出來的,多裡題目隊伍裡的...

高中物理學知識,高手進,高中物理 學習吃力(高分,請學習高手

這個很簡單啊,為什麼是路端電壓呢,因為電源也存在電阻,消耗一定的電壓,電壓表測得的就是實際輸出來的電壓,也就是路端電壓!但是有時因為電源的電阻很小忽略掉了,所以有時我們也會說測得的是電源電壓!這個測得確實不是電源電壓!而是路端電壓!也就是電源電壓減去電源內壓降剩下的!如果路端是多個用電器串聯!那就分...

物理學中的重力與壓力有什麼區別,物理學和物理學(師範)有什麼區別?

重力是物體受到地球的引力,作用點是物體的重心 壓力是一個物體受到與之接觸的另一個物體的作用,作用點是接觸面,支援力是壓力的反作用力,摩擦力是1個物體在另1物體的表面上運動或有運動的趨勢時受到的阻礙此物體運動的力 拉力是改變物體的運動狀態的一種力的形式 不知樓主是幾年級的學生?這些東西高一物理都要講的...