1樓:考試加油站
1、符號化思想
在數學教學中,各種量的關係、量的變化以及在量與量之間進行推導和演算,都是以符號形式(包括字母、數字、圖形與圖表以及各種特定的符號)來表示,即執行著一套形式化的數學語言。
2、分類思想
以比較為基礎,按照事物間性質的異同,將相同性質的物件歸入一類,不同性質的物件歸入不同類別——這就是分類,也稱劃分。數學的分類思想體現對數學物件的分類及其分類標準。
3、函式思想
函式概念深刻地反映了客觀世界的運動變化與實際事物的量與量之間的依存關係。
它告訴人們一切事物都在不斷地變化著,而且相互聯絡、相互制約,從而瞭解事物的變化趨勢及其運動規律。對於函式,《標準》提出了學生各個學段的要求,結合實驗教材,小學中年級的要求是「探索具體問題中的數量關係和變化規律」「通過簡單例項,瞭解常量和變數的意義」。
4、化歸思想
「化歸」就是轉化和歸結。在解決數學問題時,人們常常是將需要解決的問題,通過某種轉化手段,歸結為另一個相對比較容易解決的或者已經有解決程式的問題,以求得問題的解答。在小學數學中處處都體現出化歸的思想,它是解決問題的一種最基本,最常用的思想方法。
5、歸納思想
研究一般性問題時,先研究幾個簡單、個別的、特殊的情況,從中歸納出一般的規律和性質,這種從特殊到一般的思維方式被稱為歸納思想。
歸納法分為不完全歸納法和完全歸納法兩種。小學階段學生接觸較多是不完全歸納法。教學四年級上冊運算律(以加法交換律和加法結合律為例),就採用了不完全歸納法了教學。
6、優化思想
「多中選優,擇優而用」既是一種自然規律,又是一種好的思想方法。演算法多樣化是解決問題策略多樣化的一種重要體現。計算長方形的周長是一題多解,求同存異,在對的方法中要選擇最好的方法,弄清對的與好的,選擇好的。
在教學中滲透優化的策略和方法,及時引導學生對各種方法進行評價與反思,通過對各種不同方法的辨析、比較,幫助學生認識不同方法的特點與優勢,達到「去偽存真、去粗存精」的目的,培養學生「多中選優,擇優而用」的優化意識,構建數學知識,實現對知識的優化和系統化。
7、數形結合思想
數學是研究現實世界的空間形式和數量關係的科學。數形結合的思想,就是把問題的數量關係和空間形式結合起來加以考察的思想。
2樓:angela韓雪倩
1、對應思想方法:對應是人們對兩個集合因素之間的聯絡的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函式思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法:假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法:比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法:用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關係,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的資訊。
如定律、公式、等。
5、類比思想方法:類比思想是指依據兩類數學物件的相似性,有可能將已知的一類數學物件的性質遷移到另一類數學物件上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。
類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法:轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
3樓:匿名使用者
所謂數學思想,是指現實世界的空間形式和數量關係反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力能才會有一個大幅度的提高。
掌握數學思想,就是掌握數學的精髓。
1.函式思想:
把某一數學問題用函式表示出來,並且利用函式**這個問題的一般規律。這是最基本、最常用的數學方法。
2.數形結合思想:
「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何裡最常用。例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在座標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
3.分類討論思想:
當一個問題因為某種量的情況不同而有可能引起問題的結果不同時,需要對這個量的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要討論a的取值情況。
4.方程思想:
當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
5.整體思想:
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「整合」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。
6.轉化思想:
在於將未知的,陌生的,複雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函式,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作等數學理論無不滲透著轉化的思想。常見的轉化方式有:
一般 特殊轉化,等價轉化,複雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。
7.隱含條件思想:
沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。
8.類比思想:
把兩個(或兩類)不同的數學物件進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
9.建模思想:
為了描述一個實際現象更具科學性,邏輯性,客觀性和可重複性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
10.化歸思想:
化歸思想就是化未知為已知,化繁為簡,化難為易.如將分式方程化為整式方程,將代數問題化為幾何問題,將四邊形問題轉化為三角形問題等.實現這種轉化的方法有:
待定係數法,配方法,整體代人法以及化動為靜,由抽象到具體等轉化思想
11.歸納推理思想:
由某類事物的部分物件具有某些特徵,推出該類事物的全部物件都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理
另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
數學思想有哪些
4樓:南大飛秒
通過飛秒檢測發現數學思想是指現實世界的空間形式和數量關係反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。
掌握數學思想,就是掌握數學的精髓。包括:
函式方程思想
數形結合思想
分類討論思想
方程思想
整體思想
化歸思想
隱含條件思想
類比思想
建模思想
歸納推理思想
極限思想
5樓:快樂無限
數學思想,是指現實世界的空間形式和數量關係反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。
掌握數學思想,就是掌握數學的精髓。
1、對應思想方法
對應是人們對兩個集合因素之間的聯絡的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函式思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關係,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的資訊。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學物件的相似性,有可能將已知的一類數學物件的性質遷移到另一類數學物件上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學物件的分類及其分類的標準。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。
不同的分類標準就會有不同的分類結果,從而產生新的概念。對數學物件的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
法家的政治思想有哪些
在先秦諸子中,針對社會問題,儒家提倡仁愛 墨家主張兼愛 而道家則認為,仁愛和兼愛都不 法家 能救世,唯一的方法就是什麼都不做,即 無為 的思想。三家激烈爭論,但他們都主張回到過去。此時,主張面對未來的法家橫空出世。法家學派的代表人物,是戰國時期的商鞅和韓非。法家,是先秦諸子中的另類。在先秦諸子諸家當...
請問我是不是思想有問題了,我是不是思想有問題??
沒問題,時間長了就不想了。現在想想就想想唄,盡情的想。你應該要對自己有信心!我是不是思想有問題?你有沒有思想問題我不知道,但是你現在有困惑應該是真的,其實人總是很複雜的,總會面臨各種不同的問題,但是有問題不要怕,總有辦法克服,一定要樹立正確的價值觀和人生觀,笑對人生。沒問題!你想的也是別人也想的 這...
戰略和戰略思想有區別嗎,戰略和戰略思想有區別嗎
chenda思想 是肯定有區別的。戰略 strategy 一詞最早是軍事方面的概念。戰略的特徵是發現智謀的綱領。在西方,strategy 一詞源於希臘語 strategos 意為軍事將領 地方行政長官。後來演變成軍事術語,指軍事將領指揮軍隊作戰的謀略。在中國,戰略一詞歷史久遠,戰 指戰爭,略指 謀略...