1樓:指尖的柔情
歷史上地跨歐亞非的帝國共有六個: 亞歷山大帝國、羅馬帝國、拜占庭帝國、波斯帝國、阿拉伯帝國、奧斯曼帝國
2樓:丹陽之地
羅馬和土耳其,最後都沒落了
3樓:以劍作犁
蒙古帝國和奧斯曼土耳其帝國。都是快速膨脹迅速**。
4樓:菥靈
古羅馬帝國和匈奴帝國
建立:都是軍事強國
結局:古羅馬帝國**為東羅馬和西羅馬,最終分別走向滅亡(西羅馬滅的晚一點)
匈奴帝國為漢武帝遣將衛青霍去病,驅離原疆土。
5樓:過路軍師
歷史上地跨亞非歐三洲的大帝國有六個,先後是波斯帝國(亞契美尼德王朝,公元前550年—公元前330年);亞歷山大帝國(馬其頓王國亞歷山大時期,公元前334年—公元前323年);羅馬帝國(公元前27年—公元395年);東羅馬帝國(查士丁尼時期為頂峰,公元395年—公元七世紀阿拉伯帝國征服東羅馬的敘利亞和北非行省為止);阿拉伯帝國(公元632年—公元2023年);奧斯曼土耳其帝國(公元2023年—公元2023年)。
而它們開始建立都是有一個小城邦或者小王國一路對外擴張,武力征服成為大帝國(當然東羅馬帝國例外,因為東羅馬直接繼承羅馬帝國的遺產);到最後衰落為止都沒有處理好階級矛盾和帝國境內的****,而且都是被外族入侵而亡(除了亞歷山大帝國,亞歷山大死後他的部將為控制帝國而發起了八場繼業者戰爭,從而**了整個帝國),這就是它們的相似之處。
有兩個整數,它們的和恰好是兩個數字相同的兩位數,它們的乘積恰好是數字相同的三位數 求這兩個整數分
yzwb我愛我家 74和3 或37和18 要過程,請追問 祝你開心 這兩個整數必有都是2位數 由積是三個相同的三位數,就是 積是 111 的倍數而 111 37 3 所以其中一個必是37的倍數 三個數字相同的三位數,必定能被37和3整除,採用窮舉法,當三位數是111,這兩個數是37和3不符合第一個條...
兩個自然數的和除以它們的差,商是63,這兩個數是幾
設除數為x,被除數為y,列方程如下 x除y 33.2 y x 33 2 139 那麼x 33y 2,代入進去解開,即得x 101,y 3可以驗證 101除3等於33餘2,101 3 33 2 139 第一個問題 a b a b 63 31a 32b,推匯出來的關係是a是32的倍數 32n b是31a...
兩個矩陣相似,為什麼它們的秩相等
假面 矩陣a與b相似,則b p 1 ap,可逆矩陣是初等陣的乘積,所以a可以經過初等變換化為b,而初等變換不改變矩陣的秩,所以r b r a p 1 表示p的 1次冪,也就是p的逆矩陣 矩陣a與b相似,必須同時具備兩個條件 1 矩陣a與b不僅為同型矩陣,而且是方陣。2 存在n階可逆矩陣p,使得p 1...