誰幫我解下這個斐波那契數列快哦

時間 2022-02-03 00:05:02

1樓:匿名使用者

【斐波那挈數列通項公式的推導】

斐波那契數列:0,1,1,2,3,5,8,13,21……

如果設f(n)為該數列的第n項(n∈n+)。那麼這句話可以寫成如下形式:

f(0) = 0,f(1)=f(2)=1,f(n)=f(n-1)+f(n-2) (n≥3)

顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程

線性遞推數列的特徵方程為:

x^2=x+1

解得x1=(1+√5)/2, x2=(1-√5)/2.

則f(n)=c1*x1^n + c2*x2^n

∵f(1)=f(2)=1

∴c1*x1 + c2*x2

c1*x1^2 + c2*x2^2

解得c1=1/√5,c2=-1/√5

∴f(n)=(1/√5)*【√5表示根號5】

通項公式的推導方法二:普通方法

設常數r,s

使得f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

則r+s=1, -rs=1

n≥3時,有

f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

f(n-1)-r*f(n-2)=s*[f(n-2)-r*f(n-3)]

f(n-2)-r*f(n-3)=s*[f(n-3)-r*f(n-4)]

……f(3)-r*f(2)=s*[f(2)-r*f(1)]

將以上n-2個式子相乘,得:

f(n)-r*f(n-1)=[s^(n-2)]*[f(2)-r*f(1)]

∵s=1-r,f(1)=f(2)=1

上式可化簡得:

f(n)=s^(n-1)+r*f(n-1)

那麼:f(n)=s^(n-1)+r*f(n-1)

= s^(n-1) + r*s^(n-2) + r^2*f(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*f(n-3)

……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*f(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的等比數列的各項的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2

則f(n)=(1/√5)*

2樓:匿名使用者

誠心幫助你但是我不會~!就是從第三項開始以後的項是前兩項的和 望採納~!

斐波那契數列的總和,斐波那契數列

這個就通過那個通項公式求和就可以了。通項公式為an 1 5 對0 n求和sn a0 0,為了計算方便加上,對結果沒有影響 利用等比數列的求和公式。1 a a 2 a n 1 a n 1 1 a sn 1 5 1 5 1 這樣就求出來了呀。而且我們發現由通項公式,sn a n 2 1,我驗證了一下發現...

斐波那契數列

解 斐波那契數列有一個性質 一個固定的正整數除所有的斐波那契數,所得餘陣列成的數列是有周期的。先確定正整數8除斐波那契數的週期 項數 斐波那契數 除以8的餘數1 1 12 1 13 2 24 3 35 5 56 8 07 13 58 21 59 34 210 55 711 89 112 144 01...

斐波那契數列 matlab程式

戰幹過秀艾 數列的前兩項都是1,以後任一項都是前兩項的和。1 1 2 3 5 8 13 21 34 等。 function a fib n 生成長度為n的斐波那契數列 if n 1 a 1 elseif n 2 a 1 1 else b fib n 1 a b,b end 1 b end end例子...