關於微積分的問題,為什麼可積推出有界

時間 2021-06-06 12:32:02

1樓:匿名使用者

在一元微分學裡面,可微與可導是等價的處於同樣的地位,但是在多元微分學裡面,可微強於可導(可偏導);同樣在一元微分學裡面,可微(可導)均可推出連續,但是在多元微分學裡面,可微可推出連續。

可偏導並不能保證連續,需要偏導有界才能保證連續性。剩下的有界與可積是相互聯絡的,riemann可積函式類的第一個性質就是有界,當然如果對廣義積分來說有界就不是必要的了。而連續函式必riemann可積,因此連續強於可積性。

總的來說,一元微積分裡面,可積《連續《可微=可導,而可積必有界,對連續函式而言,需要在一定條件下才是有界的(如閉區間上的連續)。多元微積分裡面,積分有多種,剩下的連續、可微、可導滿足:可微必連續、可導;連續可偏導必可微;偏導有界必連續。

2樓:陳仙生

注意區間的開閉。

對於確定的閉區間,若是可積一定有界。

其實學了這麼多年數學,從來沒有學到任何一個函式在有定義的閉區間上是無界的。

對於確定的開區間,可積不一定有界

3樓:國中七

可積分=連續=極限存在=函式有界。

高等數學定積分問題,為什麼有界是可積的必要條件?求解釋,求反例

4樓:匿名使用者

這個是定積分的定義要求的,如果無界,不符合定積分的定義,當然也就不是定積分了。

5樓:匿名使用者

關於有界是可

copy積的必要條件的bai問題,在高等數學中du一般不做深入zhi討論,但在數學類dao專業的基礎課數學分析中都有證明,有興趣可參考任何一本數學分析的教材。

事實上,由定積分的定義可知,對於任意的分劃,ξ 點是任意取的,若函式在某一點附近無界,則當取到的某 ξ 點正好是無界點時,所做的 riemann 和將無意義,……。

6樓:匿名使用者

。。。。。。

這個很好解釋,一個函式可積的充分必要條件是任意分化的最大振幅版趨於零;或者是達姆權大和和達姆小和的極限相等。

這個用分化來解釋比較容易。首先如果函式無界,那麼無論什麼分化,必然在某一個區間裡振幅大於1,這個可以用比區間套定理來證明。因此一個函式黎曼可積,必然這個函式有界限。

至於反例,是有界函式不可積的例子嗎,這個很多啊,比如黎曼函式就是一個反例。

在微積分中,為什麼說有極限就一定有界?極限就是界嗎?如果是這樣,那這個數軸什麼意思?其中m代表上下

7樓:an你若成風

不要理那些bai水貨!an你若成風du給你最好的回zhi答~

首先,極限是什dao麼意思呢?

根據定義,內如果極限是容a的話,對於給定的e>0,那麼當n>n時,有|an-a|n時,-1+a<-e+aa+1>an

若有疑問請追問哦

關於每天定點網路異常的問題,為什麼電腦顯示網路異常

堅經 網通 線接入,你描述的問題很奇怪。線肯定是沒問題。建議 繼續投訴先把貓換掉,要按你說的不應該是貓的問題,網通是反對使用者私接路由的,確定你的路由設定正確,確定你當地的賬號使用者名稱是否加密。河南聯通 網通 賬戶是加密的,建議把賬號名解密後寫入路由器 每晚7 8點 是上網高峰期 定時掉線應該不是...

關於洩露商業祕密的問題,為什麼商業機密不可洩漏?

過往再見 首先,新 勞動合同法 限制了用人單位在勞動合同中設定違約金的權利,按照目前的法律規定,用人單位僅能在勞動合同中約定 服務期 違約金和 競業限制 違約金。所以,對於商業祕密的問題,如果員工洩露商業祕密對公司造成損失的,只能通過事後索賠的方式解決,一般不能事先約定違約金,更不能罰款。一 商業祕...

關於亞洲國家參加歐洲足球的問題,為什麼那麼多亞洲國家加入歐足聯

這個問題挺有意思的,因為你正好提了幾個典型的球會參與其他洲足聯的問題。土耳其 以色列 哈薩克參加歐足聯是三種不同的情況。1 土耳其雖然大部分國土在地理上屬於亞洲,但從傳統上,土耳其一直是一個歐洲國家,而且已經被歐洲和亞洲各國所公認,因此土耳其參加歐足聯是一個理所當然的情況 2 以色列從傳統文化和地域...