1 100這自然數的算術平方根和立方根中,無理數有多少個

時間 2021-08-11 17:05:23

1樓:怡網

有88個無理數,具體分析如下:

因為1—100這100個自然數的算術平方根能開出來的有1,4,9,16,25,36,49,64,81,100(10個)

再加上1—100這100個自然數的立方根能開出來的有1 8 27 64(4個)

在平方根和立方根中1和64重複了(重複了2個)因此有10+4—2=12個有理數,所以也就有100-12=88個無理數

2樓:肖瑤如意

1--100,

平方數有10個,分別是1--10的平方

算術平方根中,無理數就有100-10=90個立方數有4個,分別是1--4的立方

立方根中,無理數有100-4=96個

這其中,1和64比較特殊,

它既是平方數又是立方數,所以重複計算了,需要減去綜上,1-100這100個自然數的算術平方根和立方根中,無理數有90+96-2=184個

3樓:匿名使用者

平方根有90個

立方根有96個

共有90+96=186個

算的是無理數的個數,不是有理數的個數,不需要減去這186個無理數沒有相等的。

4樓:督甘甄涵暢

一到一百有10個平方數(1-10的平方)

即有90個數的算術平方根是無理數

一到一百有四個立方數(1-4的立方)

即有96個數的立方根是無理數

90+94=184個

所以在1-100這100個自然數的算術平方根和立方根中,無理數有184個

1到100這100個自然數的算術平方根和立方根中,無理數有多少個

5樓:蜿蜒艹尼瑪

^^這個可以用列舉法1^2=1,2^2=4...10^2=100所以一到一百內平方數有10個,所以算術平方根為無理數的有內90個;同理1^容3=1...4^3=64,5^3=125,一到一百內立方數有4個,無理立方根有96個。

綜上,一共有90+96=186個

123到一百這一百個自然數的算數平方根和立方根中無理數有多少個

6樓:

從1-100中,bai

算術平方根為無理du數的,共計90個;即除zhi了1,4,9,16,25,36,49,64,81,100這十個數;

從1-100中,立dao方根為無理專數的,共計96個,屬即除了 1,8,27,64這四個數。

7樓:果寶戰神

平方根有理數為:1;4;9;16;25;36;49;64;81;100共十個,其餘90個為無理數

立方根有理內

數為:1;容8;27;64共4個,其餘96個為無理數總的來說平方根與立方根都為無理數的為90+96=186個

1,2,3.100這100個自然數的算術平方根和立方根中,無理數有多少個

8樓:小百合

先算有理數的個數:

算術平方根:10²=100

因此有10個;

立方根:4³=64,5³=125

因此有4個。

無理數有:100-10+100-4=186(個)

9樓:無影無蹤

1-100這100個自然數的平方根中除了1、4、9、16、25、36、49、64、81、100的算術平方根是有理數外,其餘90個數的算術平方根都是無理數。

1-100這100個自然數的立方根中除了1、8、27、64這四個數的立方根是有理數外,其餘96個數的立方根都是無理數。

10樓:匿名使用者

平方根中,除了1、4、9、16、25、36、49、64、81、100的算術平方根是有理數外,其餘90個數的算術平方根都是無理數。

立方根中,除了1、8、27、64這四個數的立方根是有理數外,其餘96個數的立方根都是無理數。

11樓:曠野微塵

無理數有186個。

平方根中屬於有理數的數字有1~10,共10個有理數,那麼無聊數有90個

立方根中屬於有理數的數字有1,2,3,4,共4個有理數,那麼無理數有96個

總共無理數有90+96=186個。

有理數整數可以看作分母為1的分數。正整數、0、負整數、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數(rational number)。有理數的小數部分有限或為迴圈。

有理數為整數和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。

由於任何一個整數或分數都可以化為十進位制迴圈小數,反之,每一個十進位制迴圈小數也能化為整數或分數,因此,有理數也可以定義為十進位制迴圈小數。

有理數集是整數集的擴張。在有理數集內,加法、減法、乘法、除法(除數不為零)4種運算通行無阻。

有理數的大小順序的規定:如果a-b是正有理數,當a大於b或b小於a,記作a>b或b

有理數集與整數集的一個重要區別是,有理數集是密集的,而整數集不是稠密的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。

有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。

依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。

無理數無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。 常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。

無理數是無限不迴圈小數。如圓周率、√2(根號2)等。

有理數是由所有分數,整陣列成,它們都可以化成有限小數,或無限迴圈小數。如22/7等。

實數(real number)分為有理數和無理數(irrational number)。無理數應滿足三個條件:①是小數;②是無限小數;③不迴圈.圓周率π=3.141592653……

在1至100這100個自然數的算數平方根和立方根中,無理數有多少個

12樓:有難題快找我啊

【解答】

考慮到1——100之間範圍較小,採用列舉法。

因為1²=1, 2²=4, 3²=9, 4²=16,5²=25,

6²=36,7²=49, 8²=64, 9²=81, 10²=100

1³=1, 2³=8, 3³=27, 4³=64, 5³>100

也即 1——100範圍內的數的算術平方根中:

有理數有10個;

1——100範圍內的數的立方根中:

有理數有4個

所以,所有的算術平方根和立方根中,無理數有:

100-10-4=86個

【點評】

本題考查無理數以及算術平方根、立方根的相關知識。

①算術平方根:

若一個非負數x的平方等於a,則這個正數x為a的算術平方根(arithmetic square root)。a的算術平方根記作√a,讀作“根號a”,a叫做被開方數。規定:

0的算術平方根為0。

②立方根:

立方根(cuberoot),數學公式符號。例如:如果一個數x的立方等於a,即x的三次方等於a(x^3=a),即3個x連續相乘等於a,那麼這個數x就叫做a的立方根,也叫做三次方根。

③無理數

無理數是指實數範圍內不能表示成兩個整數之比的數。簡單的說,無理數就是10進位制下的無限不迴圈小數。如圓周率、√2(根號2)等。

有理數是由所有分數,整陣列成,它們都可以化成有限小數,或無限迴圈小數。如22/7等。實數(real number)分為有理數(rational number)和無理數(irrational number)。

13樓:匿名使用者

10的平方=100,11的平方=121>1004的立方=64,5的立方=125>100

所以算術平方根是有理數的有10個,算術平方根是無理數的有90個。

立方根是有理數的有4個,所以立方根是無理數的有96個。

1,2,3,100這自然數的算術平方根和立方根中

因為 100 10,所以,1 100的算術平方根中,有10個是有理數,無理數為100 10 90個 又 100的立方根 4.6 1 100中有4個資料是有理數 1 8 27 64 而1 64的算術平方根已經計算,所以,只有2個是有理數 所以,1 100中的算術平方根和立方根中的無理數為100 10 ...

從1到100自然數中,它們各自的算術平方根和立方根中共有多少

1 的算術平方根為 1.000000 算術立方根為 1.000000 2 的算術平方根為 1.414214 算術立方根為 1.259921 3 的算術平方根為 1.732051 算術立方根為 1.442250 4 的算術平方根為 2.000000 算術立方根為 1.587401 5 的算術平方根為 ...

81的平方根是1 44的算術平方根是

本題是實數這一單元的習題。答案為 9,1.2 本題考察了算術平方根與平方根的知識點。定義見七年級下冊數學,習題見數學書及輔助教材。對輔助教材的建議是 新觀察 勤奮的安菲爾德 1 平方根,又叫二次方根。一個正數有兩個平方根 0只有一個平方根,就是0本身 負數是沒有平方根的。2 平方根又包含算術平方根,...