1樓:連城青津
高等數學是統稱,一般大學學的數學包括高等數學,概率論與數理統計和線性代數。
高等數學包括函式,極限,連續,一元和多元微積分學,向量代數和空間解析幾何,無窮級數,微分和差分方程等內容。微積分內容只是佔的比例較大。
因此不能用微積分代替高等數學。
供參考,希望有幫助。
2樓:
呵呵,^_^ ,高數包括》=微積分,當然了,有人考的簡單,就把兩者等同起來。
實際上,高數還包括級數,微分方程等內容。甚至還有線代。
3樓:
如就教材或課程名稱而言,《高等數學》是非數學專業的微積分,主要考微積分定義定理的應用,偏重計算;而數學專業的微積分課程名稱為《數學分析》,主要偏向於定義定理的**,也就是主要考查證明。
廣義的高等數學已經成為雞肋,只有酸不可耐的人,才非要區分初等數學與高等數學,中小學學的數學就是初等數學,大學學的數學就是高等數學。關於這個廣義的高等數學,不談也罷,說得完嗎?也沒有意思,呵呵。
4樓:弭瑩申語風
微積分是高等數學裡的知識,我今年大一學高等數學就接觸了微積分,學好微積分那後面的不定積分、定積分就很好理解了
5樓:匿名使用者
在我看來沒有區別的,呵呵!
高等數學微積分,微分和積分割槽別是什麼?詳細的。哥有很多分。
6樓:匿名使用者
分多不要浪費!
積分一般分為不定積分、定積分和微積分三種
1.0不定積分
設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分。
記作∫f(x)dx。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分。
由定義可知:
求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分。
也可以表述成,積分是微分的逆運算,即知道了導函式,求原函式.
2.0定積分
眾所周知,微積分的兩大部分是微分與積分。微分實際上是求一函式的導數,而積分是已知一函式的導數,求這一函式。所以,微分與積分互為逆運算。
實際上,積分還可以分為兩部分。第一種,是單純的積分,也就是已知導數求原函式,而若f(x)的導數是f(x),那麼f(x)+c(c是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到f(x),因為f(x)+c的導數也是f(x),c是無窮無盡的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用f(x)+c代替,這就稱為不定積分。
而相對於不定積分,就是定積分。
所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數,而不是一個函式。
定積分的正式名稱是黎曼積分,詳見黎曼積分。用自己的話來說,就是把直角座標系上的函式的圖象用平行於y軸的直線把其分割成無數個矩形,然後把某個區間[a,b]上的矩形累加起來,所得到的就是這個函式的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a、b。
我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求一個函式的原函式。它們看起來沒有任何的聯絡,那麼為什麼定積分寫成積分的形式呢?
定積分與積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:
若f'(x)=f(x)
那麼∫f(x) dx (上限a下限b)=f(a)-f(b)
牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函式的值與下限在原函式的值的差。
正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。
3.0微積分
積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。
一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
其中:[f(x) + c]' = f(x)
一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。
積分 integral 從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。
例如:已知定義在區間i上的函式f(x),求一條曲線y=f(x),x∈i,使得它在每一點的切線斜率為f′(x)= f(x)。函式f(x)的不定積分是f(x)的全體原函式(見原函式),記作 。
如果f(x)是f(x)的一個原函式,則 ,其中c為任意常數。例如, 定積分是以平面圖形的面積問題引出的。y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:
a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。
當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式
微分一元微分
定義:設函式y = f(x)在x.的鄰域內有定義,x0及x0 + δx在此區間內。
如果函式的增量δy = f(x0 + δx) − f(x0)可表示為 δy = aδx + o(δx)(其中a是不依賴於δx的常數),而o(δx0)是比δx高階的無窮小,那麼稱函式f(x)在點x0是可微的,且aδx稱作函式在點x0相應於自變數增量δx的微分,記作dy,即dy = aδx。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式的微分與自變數的微分之商等於該函式的導數。
因此,導數也叫做微商。
當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在一個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差關於△x→0是高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。函式可導必可微,反之亦然,這時a=f′(x)。再記a·△x=dy,則dy=f′(x)dx。
例如:d(sinx)=cosxdx。
幾何意義:
設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δy|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。
多元微分
同理,當自變數為多個時,可得出多元微分得定義。
運演算法則:
dy=f'(x)dx
d(u+v)=du+dv
d(u-v)=du-dv
d(uv)=du·v+dv·u
d(u/v)=(du·v-dv·u)/v^2
7樓:匿名使用者
你有多少分我不知道,可是這種只喊口號,不見行動的行為我很bs儘管如此,為了傳授知識,我還是告訴你基本的內容微分相當於求導,積分相當於求原函式。
求導的方法簡單,求原函式則有點難度。
關於高等數學和微積分的區別求問學姐學
8樓:是你找到了我
一、性質不同
1、高等數學:相對於初等數學而言,數學的物件及方法較為繁雜的一部分;通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
2、微積分:是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。
二、主要內容不同
1、高等數學:主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
2、微積分:主要內容包括:切線、函式、極限、積分、微分。
三、應用不同
1、高等數學:在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」。
2、微積分:;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
9樓:風火輪
大學的高等數學幾乎等同於微積分,因為微積分的內容佔了高數內容90%以上。
導數和微分、定積分和不定積分、多與函式的微積分、常微分方程都屬於微積分的範疇,而高數裡還有函式與極限、空間解析幾何、無窮級數等內容,這些內容又或多或少的與微積分內容有交叉,比如極限裡面的洛必達法則就需要求導,空間解析幾何中法線、切線的求解需要求導,無窮級數求和函式也需要微積分參與。
不同的高校有的學高數,有的學微積分,但實質上學的內容基本都是一樣的。
10樓:晴天雨絲絲
很簡單,微積分是高等數學的一個重要分支內容!
11樓:水登江河
《高等數學》就是非數學專業的微積分,數學專業的微積分叫做《數學分析》。
高數不考定義定理的證明,數分專考定義定理的證明。
很清楚了吧?呵呵
高等數學與微積分有何區別
12樓:匿名使用者
數學裡麵包括微積分,但只是有微積分的一部分,高等數學裡面還有傅立葉級數,泰勒級數等其它一些內容。
積分的課程主要是學習微積分,相對而言,比高等數學要難,一般裡面還包括複變函式,積分變換等,但這兩項一般在高等數學裡面只是簡單介紹。
高等數學 微積分題,高等數學 微積分 定積分題目?
兩邊等式求導數 機得f x 2f x e x 這是標準的微分方程式,去書中套公式就行了 數學符號不好表是。不寫了 上面的各位不會做就不要誤人子弟。先令u t 2 f x 2 上限變成x 下限變成0 f u du e的x次方 然後對f x 求導 可變為 f x 2f x e的x次方此時變為微分方程,先...
什麼是高等微積分,高等數學 微積分中積分元素的含義是什麼 比如ds,dS,dxdy,d
初等微積分基本上就是理工科高等數學中的微積分部分,比起理科數學分析,缺少實數理論,連續 積分 級數的一些深入內容,比如一致連續 一致收斂 達布和等等,高等微積分是美國人的說法,除了要補上我國數學分析的基礎理論外,還要講授黎曼 斯蒂爾傑斯積分 勒貝格測度 勒貝格積分的知識,就是說,要包含我國實變函式課...
高等數學數學微積分公式和定理,高等數學微積分基本公式
高等數學公式 導數公式 基本積分表 三角函式的有理式積分 一些初等函式 兩個重要極限 三角函式公式 6 1誘導公式 函式角a sin cos tg ctg sin cos tg ctg 90 cos sin ctg tg 90 cos sin ctg tg 180 sin cos tg ctg 18...