高中函式知識點,誰有高中函式知識點總結啊?要全面的!

時間 2021-12-19 11:22:18

1樓:匿名使用者

一、函式的概念與表示

1、對映

(1)對映:設a、b是兩個集合,如果按照某種對映法則f,對於集合a中的任一個元素,在集合b中都有唯一的元素和它對應,則這樣的對應(包括集合a、b以及a到b的對應法則f)叫做集合a到集合b的對映,記作f:a→b。

注意點:(1)對對映定義的理解。(2)判斷一個對應是對映的方法。一對多不是對映,多對一是對映

2、函式

構成函式概念的三要素 ①定義域②對應法則③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且 ∈r的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義: 設y=f(x),x∈a,如果對於任意 ∈a,都有 ,則稱y=f(x)為偶函式。

如果對於任意 ∈a,都有 ,則稱y=f(x)為奇

函式。2.性質:

①y=f(x)是偶函式 y=f(x)的圖象關於 軸對稱, y=f(x)是奇函式 y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[兩函式的定義域d1 ,d2,d1∩d2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱 ②看f(x)與f(-x)的關係

五、函式的單調性

1、函式單調性的定義:

2 設 是定義在m上的函式,若f(x)與g(x)的單調性相反,則 在m上是減函式;若f(x)與g(x)的單調性相同,則 在m上是增函式。

2樓:fpc520來

函式的解析式與定義域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且 ∈r的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

函式的奇偶性

1.定義: 設y=f(x),x∈a,如果對於任意 ∈a,都有 ,則稱y=f(x)為偶函式。

如果對於任意 ∈a,都有 ,則稱y=f(x)為奇

函式。2.性質:

①y=f(x)是偶函式 y=f(x)的圖象關於 軸對稱, y=f(x)是奇函式 y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[兩函式的定義域d1 ,d2,d1∩d2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱 ②看f(x)與f(-x)的關係 一、函式的概念與表示

1、對映

(1)對映:設a、b是兩個集合,如果按照某種對映法則f,對於集合a中的任一個元素,在集合b中都有唯一的元素和它對應,則這樣的對應(包括集合a、b以及a到b的對應法則f)叫做集合a到集合b的對映,記作f:a→b。

注意點:(1)對對映定義的理解。(2)判斷一個對應是對映的方法。一對多不是對映,多對一是對映

2、函式

構成函式概念的三要素 ①定義域②對應法則③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且 ∈r的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義: 設y=f(x),x∈a,如果對於任意 ∈a,都有 ,則稱y=f(x)為偶函式。

如果對於任意 ∈a,都有 ,則稱y=f(x)為奇

函式。2.性質:

①y=f(x)是偶函式 y=f(x)的圖象關於 軸對稱, y=f(x)是奇函式 y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[兩函式的定義域d1 ,d2,d1∩d2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱 ②看f(x)與f(-x)的關係

五、函式的單調性

1、函式單調性的定義:

2 設 是定義在m上的函式,若f(x)與g(x)的單調性相反,則 在m上是減函式;若f(x)與g(x)的單調性相同,則 在m上是增函式。

3樓:泰凡嬴巨集邈

1、一次函式的定義

一次函式,也作線性函式,在x,y座標軸中可以用一條直線表示,當一次函式中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。

2、函式的表示方法

列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函式之間的對應規律。

解析式法:簡單明瞭,能夠準確地反映整個變化過程中自變數與函式之間的相依關係,但有些實際問題中的函式關係,不能用解析式表示。

圖象法:形象直觀,但只能近似地表達兩個變數之間的函式關係。

3、一次函式的性質

一般地,形如y=kx+b(k,b是常數,且k≠0),那麼y叫做x的一次函式,當b=0時,y=kx+b即y=kx,所以說正比例函式是一種特殊的一次函式

注:一次函式一般形式y=kx+b(k不為0)

a).k不為0

b).x的指數是1

c).b取任意實數

一次函式y=kx+b的影象是經過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移)具體如下:

4、正比例函式和一次函式

5、確定函式定義域的方法

(1)關係式為整式時,函式定義域為全體實數;

(2)關係式含有分式時,分式的分母不等於零;

(3)關係式含有二次根式時,被開放方數大於等於零;

(4)關係式中含有指數為零的式子時,底數不等於零;

(5)實際問題中,函式定義域還要和實際情況相符合,使之有意義。

6、用待定係數法確定函式解析式的一般步驟

(1)根據已知條件寫出含有待定係數的函式關係式;

(2)將x、y的幾對值或影象上的幾個點的座標代入上述函式關係式中得到以待定係數為未知數的方程

(3)解方程得出未知係數的值;

(4)將求出的待定係數代回所求的函式關係式中得出所求函式的解析式。

誰有高中函式知識點總結啊?要全面的!

4樓:

1. 函式的奇偶性

(1)若f(x)是偶函式,那麼f(x)=f(-x) ;

(2)若f(x)是奇函式,0在其定義域內,則 f(0)=0(可用於求引數);

(3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;

(5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;

2. 複合函式的有關問題

(1)複合函式定義域求法:若已知 的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。

(2)複合函式的單調性由「同增異減」判定;

3.函式影象(或方程曲線的對稱性)

(1)證明函式影象的對稱性,即證明影象上任意點關於對稱中心(對稱軸)的對稱點仍在影象上;

(2)證明影象c1與c2的對稱性,即證明c1上任意點關於對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;

(3)曲線c1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線c1:f(x,y)=0關於點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0;

(5)若函式y=f(x)對x∈r時,f(a+x)=f(a-x)恆成立,則y=f(x)影象關於直線x=a對稱;

(6)函式y=f(x-a)與y=f(b-x)的影象關於直線x= 對稱;

4.函式的週期性

(1)y=f(x)對x∈r時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是週期為2a的周期函式;

(2)若y=f(x)是偶函式,其影象又關於直線x=a對稱,則f(x)是週期為2︱a︱的周期函式;

(3)若y=f(x)奇函式,其影象又關於直線x=a對稱,則f(x)是週期為4︱a︱的周期函式;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是週期為2 的周期函式;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函式y=f(x)是週期為2 的周期函式;

(6)y=f(x)對x∈r時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是週期為2 的周期函式;

5.方程k=f(x)有解 k∈d(d為f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈r+); (2) l og a n= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣「同正異負」記憶; (4) a log a n= n ( a>0,a≠1,n>0 );

8. 判斷對應是否為對映時,抓住兩點:(1)a中元素必須都有象且唯一;(2)b中元素不一定都有原象,並且a中不同元素在b中可以有相同的象;

9. 能熟練地用定義證明函式的單調性,求反函式,判斷函式的奇偶性。

10.對於反函式,應掌握以下一些結論:(1)定義域上的單調函式必有反函式;(2)奇函式的反函式也是奇函式;(3)定義域為非單元素集的偶函式不存在反函式;(4)周期函式不存在反函式;(5)互為反函式的兩個函式具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函式,設f(x)的定義域為a,值域為b,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a).

11.處理二次函式的問題勿忘數形結合;二次函式在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關係;

12. 依據單調性,利用一次函式在區間上的保號性可解決求一類引數的範圍問題

13. 恆成立問題的處理方法:(1)分離引數法;(2)轉化為一元二次方程的根的分佈列不等式(組)求解;

高中數學函式部分詳細的知識點總結

首先是集合.比較簡單.不細說 然後是函式部分 指數 對數 三角函式部分 函式部分主要是記住影象.性質.對稱性.奇偶性.定義域.值域等等.這部分尤其是三角函式公式比較多.注意做題鞏固三角函式一定要記住公式.誘導公式.2倍角.3倍角.半形.正弦餘弦和差.但是對於積化和差與和差化積不用花太多時間.不會太考...

高中知識點,高中重要的知識點有什麼?

最新的知識點,你知道嗎?高中重要的知識點有什麼?一 市屬重點中學 重慶南開 重慶一中 重慶巴蜀 外語校 重慶八中 重慶育才 西師附中。二 市級重點中學 各主城區內最好的中學 渝中區 求精中學 江北區 重慶18中 南岸區 重慶11中 渝北區 渝北中學 北碚區 兼善中學 巴南區 巴縣中學 九龍坡區 重慶...

高中學習小技巧知識點,高中學習小技巧 知識點

活寶牛來倫子 學習物理非常注重過程,一個認知 理解 運用的過程。1.認知 利用身邊的事物或現象甚至是老師敘述的一些例子來幫助自己去充分認識它,對它產生興趣。2.理解 用理解的方式去記憶公式 定理 試驗等等。可以用形象思維等等巧妙的方法去理解和記憶。例如,什麼是真空,可以這樣去理解 真空就是真的空了,...