1樓:匿名使用者
360° | 270°| 0°| 15° | 30° | 37°| 45°
sin | 0 | -1 | 0 |(√6-√2)/4 | 1/2 | 3/5 |√2/2
cos | 1 | 0 | 1 |(√6+√2)/4 |√3/2 | 4/5 |√2/2
tan | 0 | 無值 | 0 | 2-√3 |√3/3 | 3/4 | 1
| 53° | 60° | 75° | 90° | 120° | 135°
sin | 4/5 |√3/2 ||(√6+√2)/4 | 1 | √3/2 | √2/2
cos | 3/5 | 1/2 | (√6-√2)/4 | 0 | -1/2 |-√2/2
tan | 4/3 | √3 | 2+√3 | 無值 | -√3 | -1
|180°
sin |0
cos |-1
tan |0
最重要的是要記公式了.公式雖然多,但掌握了其中的規律,就不難得記了
倒數關係
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商數關係
tanα=sinα/cosα
cotα=cosα/sinα
平方關係
sinα²+cosα²=1
1+tanα²=secα²
1+cotα=cscα²
以下關係,函式名不變,符號看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
以下關係,奇變偶不變,符號看象限
sin(90°-α)=cosα
cos(90°-α)=sinα
tan(90°-α)=cotα
cot(90°-α)=tanα
sin(90°+α)=cosα
cos(90°+α)=sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
積化和差公式
sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]
和差化積公式
sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]
sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]
cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]
cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]
三倍角公式
sin3α=3sinα-4sinα³
cos3α=4cosα³-3cosα
兩角和與差的三角函式公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)
好了,就是這麼多了,在此祝你學習進步(開始那些公式對的整整齊齊的,好不容易打出來的,提交答案就變成那樣了,我用|號將他們分開,每個|對應的就是上面的值)
2樓:匿名使用者
sinx=cos(x+π/2)
高中三角函式
你的問題非常敏感,兩個式子平方後相加得 sinc 1 2 c 30度,或c 150度 一般地說是安全的,但鈍角是危險的 也就是說可能是增根 怎麼排除是有難度的 我的處理如下 如果c 150度,則a b 30度,3sina 4cos 30 a 6 3sina 4 cos30sina sin30cosa...
高中三角函式的題目 急求解答,高中三角函式題,求解答過程。
設a sina b sinb c sinc k則a ksina b ksinb c ksinc a b c sina sinb sinc ksina ksinb ksinc sina sinb sinc k a sina 3 sin60 2 a sina b sinb c sinc 所以原式 a s...
求高中三角函式 所有公式,高中三角函式公式是什麼
高中三角函式公式有很多。三角函式是基本初等函式之一,是以角度 數學上最常用弧度制,下同 為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。在數學...