什麼情況下才能算是極限不存在,函式極限不存在有哪幾種情況?

時間 2021-08-15 18:12:47

1樓:

極限不存在:

1、極限值不存在(左右極限不等或不存在)

2、結果為無窮大。

極限存在與否的判斷

1、結果若是無窮小,無窮小就用0代入,0也是極限。

2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。

3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。

4、若分子分母各自的極限都是無窮小,那就必須用羅畢達方法確定最後的結果。

求極限基本方法有

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入;

2、無窮大根式減去無窮大根式時,分子有理化;

3、運用兩個特別極限;

4、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函式。

5、用mclaurin(麥克勞琳)級數,而國內普遍誤譯為taylor(泰勒)。

2樓:

有三種情況:

(1)f(x)在a附近無界,例如lim1,limtan r.

(2)f(x)在a的左右極限存在,但不相等,如lim|xl/-(3)f(x)在a附近無限振盪.例如lim sin 1x+0x

3樓:雨洛成詩

高數中極限存在就是指極限求出來是一個具體的唯一的數如x趨於0時 sinx的極限是0等

極限不存在就是求出來不是一個確定的數 有兩種情況一種是求出來為 無窮大或無窮小 如tanx當x趨於π/2時另一種就是求出來是不確定的數 如sinx當x趨於無窮大時就這兩種情況了

4樓:琴金

極限,你只要能證明沒有極限,就算,就是極限不存在

5樓:種菜俠

三種,無窮大∞,振盪(不存在,也不等於∞),左右極限不相等

6樓:晴雨微暖

極限不存在的幾種情況:1.結果為無窮大時,像1/0,無窮大等2.左右極限不相等時,尤其是分段函式的極限問題

極限為±無窮極限算存在還是不存在?

7樓:不是苦瓜是什麼

如果函式的極限為±無窮,那麼極限算不存在。無窮大並不是極限的存在,它只是表明回當x趨向於無窮答或某一特定值時f(x)趨向於無窮大,而極限存在必定為某一特定值a。

與無窮大定義比較便可得知無窮大並不是極限的存在,它只是表明當x趨向於無窮或某一特定值時f(x)趨向於無窮大,而極限存在必定為某一特定值a(就算是極限為派或e,它也是一個特定的、實實在在存在的東西)。

在矩陣論中,實數正交矩陣是方塊矩陣q,它的轉置矩陣是它的逆矩陣,如果正交矩陣的行列式為+1,則稱之為特殊正交矩陣。

1.方陣a正交的充要條件是a的行(列)向量組是單位正交向量組;

2.方陣a正交的充要條件是a的n個行(列)向量是n維向量空間的一組標準正交基;

3.a是正交矩陣的充要條件是:a的行向量組兩兩正交且都是單位向量;

4.a的列向量組也是正交單位向量組。

5.正交方陣是歐氏空間中標準正交基到標準正交基的過渡矩陣 。

8樓:韓苗苗

如果函抄數的極限為±無窮襲,那麼極限算不存bai在。無窮大並不是極限du

的存在,它只zhi是表明當x趨向dao於無窮或某一特定值時f(x)趨向於無窮大,而極限存在必定為某一特定值a。

擴充套件資料

設函式f(x)在x0的某一去心鄰域內有定義(或|x|大於某一正數時有定義)。如果對於任意給定的正數m(無論它多麼大),總存在正數δ(或正數x),只要x適合不等式0<|x-x0|<δ(或|x|>x,即x趨於無窮),對應的函式值f(x)總滿足不等式|f(x)|>m,則稱函式f(x)為當x→x0(或x→∞)時的無窮大。

在自變數的同一變化過程中,無窮大與無窮小具有倒數關係,即當x→a時f(x)為無窮大,則1/f(x)為無窮小;反之,f(x)為無窮小,且f(x)在a的某一去心鄰域內恆不為0時,1/f(x)才為無窮大。

無窮大記作∞,不可與很大的數混為一談。

無窮大分為正無窮大、負無窮大,分別記作+∞、-∞ ,非常廣泛的應用於數學當中。

兩個無窮大量之和不一定是無窮大;有界量與無窮大量的乘積不一定是無窮大(如常數0就算是有界函式);有限個無窮大量之積一定是無窮大。

9樓:demon陌

分情況,如果函式的極限為±無窮,那麼極限算不存在。無窮大並不是極限的記憶體在,它只容是表明當x趨向於無窮或某一特定值時f(x)趨向於無窮大,而極限存在必定為某一特定值a。

「當n>n時,均有不等式|xn-a|<ε成立」意味著:所有下標大於n的x0都落在(a-ε,a+ε)內;而在(a-ε,a+ε)之外,數列 中的項至多隻有n個(有限個)。

如果存在某 ε0>0,使數列 中有無窮多個項落在(a-ε0,a+ε0) 之外,則 一定不以a為極限。

10樓:匿名使用者

同學,請你再抄

仔細看一下襲

極限的定義,與無窮大定義比較便可得知無窮大並不是極限的存在,它只是表明當x趨向於無窮或某一特定值時f(x)趨向於無窮大,而極限存在必定為某一特定值a(就算是極限為派或e,它也是一個特定的、實實在在存在的東西)。這也可以算作你追問的解答了,因為無窮小的本質便是極限為零(零便是特定值),p.s(冒昧一問同學現在是大學生嗎(可以無視))

11樓:匿名使用者

極限為±無窮極限算存在還是不存在?

回答:不存在!

12樓:琉璃月明

極限不存在和極限為無窮是兩種情況。

函式極限不存在有哪幾種情況? 10

13樓:soumns馬

極限不存在有三種情況:

1.極限為無窮,很好理解,明顯與極限存在定義相違。

2.左右極限不相等,例如分段函式。

3.沒有確定的函式值,例如lim(sinx)從0到無窮。

極限存在與否條件:

1、結果若是無窮小,無窮小就用0代入,0也是極限。

2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。

3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。

4、若分子分母各自的極限都是無窮小,那就必須用羅畢達方法確定最後的結果。

擴充套件資料

極限思想

極限思想方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是數學分析在初等數學的基礎上有承前啟後連貫性的、進一步的思維的發展。數學分析之所以能解決許多初等數學無法解決的問題,正是由於其採用了極限的無限逼近的思想方法。

人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。要相信, 用極限的思想方法是有科學性的,因為可以通過極限的函式計算方法得到極為準確的結論。

14樓:匿名使用者

極限不存在大致可以分為三種情況:

1.極限為無窮,很好理解,明顯與極限存在定義相違;

2.左右極限不相等,例如分段函式;

3.沒有確定的函式值,例如lim(sinx)從0到無窮,但要注意,sinx是有界的。。。

我這樣理解的,希望對你有幫助。。。

15樓:找罵成全你

不能證明存在 就可以反證不存在了簡單啊

16樓:匿名使用者

柯西極限存在準則又叫柯西審斂原理,給出了數列收斂的充分必要條件。

數列收斂的充分必要條件是:對於任意給定的正數ε,存在著這樣的正整數n,使得當m>n,n>n時就有

|xn-xm|<ε

這個準則的幾何意義表示,數列收斂的充分必要條件是:對於任意給定的正數ε,在數軸上一切具有足夠大號碼的點xn中,任意兩點間的距離小於ε .

充分性:cauchy列(基本列)收斂

證明:1、首先證明cauchy列有界

取e=1,根據cauchy列定義,取自然數n,當n>n時有c

|a(n)-a(n)|0,都存在n,使得m、n>n時有

|a(m)-a(n)|n,使得

|aj(k)-a|=k>n,所以凡是n>n時,我們有

|a(n)-a|=|a(n)-aj(k)|+|aj(k)-a|

這樣就證明了cauchy列收斂於a.

即得結果:cauchy列收斂

注意:1、e是表示按照讀音epslon寫的那個希臘文。

2、上面a(n)表達中,n表示下標;aj(n)中,j(n)表示a的下標,n表示j的小標。

必要性書上有

什麼情況下函式是極限不存在的?左右極限相等時極限才存在?函式值趨近於無窮大時是否有極限?

17樓:匿名使用者

對於某一個點的極限存不存在 只要判斷他左極限是不是等於右極限時 (趨向無窮大是極限不存在的,)

18樓:卜曼宜

1)自變數趨於無窮時,函式值趨於無窮,極限不存在自變數趨於有限值時,函式連續(即左極限=右極限=此點函式值)時,極限存在

2)是的,還有等於此點函式值

3)沒有極限

樓主給分吧,大早晨的剛爬起來

19樓:蘇嗣強

2012四川卷理科數學選擇題第三題就是這樣的題目,可以看看。

如何判斷極限是否存在,什麼樣的極限不存在

20樓:pasirris白沙

樓上網友的說法,確實是書

21樓:詩柳富

極限存在的兩個準則,老師教你常考題型的解釋

22樓:塞玉巧鎖黛

如何判斷極限是否存在?

1、不存在:高數中極限存在就是指極限求出來是一個具體的唯一的數2、如x趨於0時

sinx的極限是0等

3、極限不存在就是求出來不是一個確定的數

4、存在;一種是求出來為

無窮大或無窮小

如tanx當x趨於π/2時

5、另一種就是求出來是不確定的數

如sinx當x趨於無窮大時

【事實上屢見不鮮的反例】:

a、所有的暇積分,所有的廣義積分,通通、統統建立在單側極限上,能不算?誰敢不算?

b、所有的

n趨向於

無窮大型的數列極限,哪個不是單側極限?

23樓:破費特英

極限不存在是指:

極限為無窮大時,極限不存在.

左極限與右極限不相等.

極限存在是指:

存在左右極限且左極限等於右極限

函式連續

函式的值等於該點處極限值

「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?

」那麼可以概括地說:「數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。

極限不存在什麼情況?為什麼極限不存在?

極限不存在有三種情況 1 極限為無窮,很好理解,明顯與極限存在定義相違。2 左右極限不相等,例如分段函式。3 沒有確定的函式值,例如lim sinx 從0到無窮。建立的概念。可以說數學分析中的幾乎所有的概念都離不開極限。在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思...

公司在什麼情況下才能破產,什麼情況下,公司可以申請破產?

華律網 依我國 公司登記管理條例 所列舉的吊銷理由為主線,結合 個人獨資企業登記管理辦法 合夥企業登記管理辦法 企業法人登記管理條例 以及相關法律法規等,我國吊銷營業執照的理由可歸納為以下主要方面 1 虛假註冊。即以各類虛假檔案 含虛假註冊資本證明等 騙取註冊的情形。這幾乎是所有的吊銷營業執照型別所...

什麼情況下才能享受生育保險

鑽誠投資擔保 生育保險待遇由用人單位在職工產後或手術後 18 個月內,向社會保險經辦機構申請辦理,申辦時應填報 職工生育待遇申領表 並提供以下資料 計劃生育行政部門核發的生育證明 生育醫療證明 門診病歷 出院小結 計劃生育手術記錄等原始材料 嬰兒出生證。社會保險經辦機構應當自受理申請之日起 15 個...