1樓:匿名使用者
向量和複數運算本質上是一樣的
有時候在幾何題和解析幾何的證明和運算上很有技巧
在生活中向量也有一些具體表現形式,有關的問題也可以充分利用向量求解.應用問題的解決主要是建立數學模型.用向量、三角、解析幾何之間的特殊關係,將生活與數學知識之間進行溝通,使動靜轉換充實到解題過程之中。
一、平面向量在位移與速度上的應用
例1 以某市人民廣場的中心為原點建立直角座標系,x軸指向東,y軸指向北一個單位表示實際路程100米,一人步行從廣場入口處a(2,0)出發,始終沿一個方向均速前進,6分鐘時路過少年宮c,10分鐘後到達科技館b(-3,5).
求:此人的位移向量(說明此人位移的距離和方向);
此人行走的速度向量(用座標表示);
少年宮c點相對於廣場中心所處的位置.
(下列資料供選用:tan18°24=0.3327,tan18°26= 13 ,tan2=0.0006)
分析: ⑴ab的座標等於它終點的座標減去起點的座標,代入a,b座標可求;⑵習慣上單位取百米/小時,故需先將時間換成小時。而速度等於位移除以時間,由三角知識可求出座標表示的速度向量。
⑶通過向量的座標運算及三角函式公式求解。
解:⑴ ab=(-3,5)-(2,0)=(-5,5),
|ab|=(-5)2+52=52,∠xob=135°
∴此人的位移為「西北52百米」。
⑵t=10分= 16 小時,|v|= |ab|t =302
∴vx=|v|cos135°=-30,vy=|v|sin135°=30,∴v=(-30,30)
⑶∵ac= 610 ab,∴oc=oa+ 35 ab=(2,0)+ 35 (-5,5)=(-1,3)
∴|oc|=10,又tan(18°24+2)= 0.3327+0.00061-0.3327×0.0006 = 13
而tan∠coy= 13 ,∴∠coy=arctan 13 =18°26。
∴少年宮c點相對於廣場中心所處的位置為「北偏西18°26,10百米」處。
評註:以生活中的位移、速度為背景的向量應用題,首先要寫出有關向量,利用向量中的模來求解。本題是向量知識與三角知識的交匯,主要是依託平面向量的模、方位角等通過形和數的相互轉化,實現與三角的有機整合,同時考查三角方面的知識和方法及綜合解題能力。
二、平面向量在力的平衡上的應用
例2 帆船是藉助風帆推動船隻在規定距離內競速的一項水上運動.2023年第2屆奧運會開始列為正式比賽專案, 帆船的最大動力**是"伯努利效應".如果一帆船所受"伯努利效應"產生力的效果可使船向北偏東30º以速度20 km/h行駛,而此時水的流向是正東,流速為20 km/h.若不考慮其它因素,求帆船的速度與方向.
分析: 帆船水中行駛,受到兩個速度影響: 伯努利效應"產生力的效果為使船向北偏東30º,速度是20 km/h,及水的流向是正東,流速為20 km/h.
這兩個速度的和就為帆船行駛的速度.根據題意,建立數學模型,運用向量的座標運算來解決問題.
解:如圖建立直角座標系, "伯努利效應"的速度為v1=20 km/h,水的流速為v2=20 km/h,帆船行駛的速度為v,則v=v1+v2.
由題意可得向量v1的座標為(20cos60o,20sin60o)即v1=(10,10 ),向量v2的座標為v2=(20,0)
則帆船行駛速度v的座標為
v=v1+v2=(10,10 )+(20,0)=(30,10 )
∴|v|= ,∵tanα= ,α為銳角∴α=30o
∴帆船向北偏東行駛.
答: 帆船向北偏東60o行駛,速度為203 km/h.
評註: 在利用向量的座標運算解決生活中有關問題時,先根據情況建立向量模型,利用直角座標系,得到向量的座標,再按照向量座標運演算法則,得出答案,解決實際問題.
三、平面向量的數量積在生活中的應用
例3 某同學購買了x支a型筆,y支b型筆,a型筆的**為m元,b型筆的**為n元.把購買a、b型筆的數量x、y構成數量向量a=(x,y),把**m、n構成**向量b=(m,n).則向量a與b的數量積表示的意義是_______________.
解析: 此題根據購賣a、b兩種型號的筆的數量與**構成了一個二元向量a,b.根據向量的數量積的運算公式可得a•b=xm+yn.
而xm表示購買a型筆所用的錢數;yn表示購買b型筆所用的錢數.所以向量a與b的數量積表示的意義是購買兩種筆所用的總錢數.
評註: 本題把生活中的平常事件轉化為了向量問題,運用向量的數量積一下子解決了購買所用的總錢數.利用這種方法,我們還可以推廣到多種商品,構建多元向量,就可以有序快捷得到購買時所用的總錢數.
同學們可以試一試.
向量在生活中的應用,大多是和座標平面的整合,這時關鍵是確定點的座標,再確定向量的座標。從而達到向量關係與座標關係的互譯,架起了生活與向量之間的橋樑。把向量的基本思想應用到實際生活中,可使我們能夠更加直觀地通過向量視角觀察生活,也讓向量更好地為我們服務,解決更多的實際生活問題
2樓:你若化成風呵呵
很多很多!以後解立體幾何簡單些!
學習向量有什麼用,主要用於什麼方面在實際生活中的應用
3樓:庸詘皇
有時候在幾何題和解析幾何的證明和運算上很有技巧
在生活中向量也有一些具體表現形式,有關的問題也可以充分利用向量求解.應用問題的解決主要是建立數學模型.用向量、三角、解析幾何之間的特殊關係,將生活與數學知識之間進行溝通,使動靜轉換充實到解題過程之中.
一、平面向量在位移與速度上的應用
例1 以某市人民廣場的中心為原點建立直角座標系,x軸指向東,y軸指向北一個單位表示實際路程100米,一人步行從廣場入口處a(2,0)出發,始終沿一個方向均速前進,6分鐘時路過少年宮c,10分鐘後到達科技館b(-3,5).
求:此人的位移向量(說明此人位移的距離和方向);
此人行走的速度向量(用座標表示);
少年宮c點相對於廣場中心所處的位置.
(下列資料供選用:tan18°24=0.3327,tan18°26= 13 ,tan2=0.0006)
分析: ⑴ab的座標等於它終點的座標減去起點的座標,代入a,b座標可求;⑵習慣上單位取百米/小時,故需先將時間換成小時.而速度等於位移除以時間,由三角知識可求出座標表示的速度向量.
⑶通過向量的座標運算及三角函式公式求解.
⑴ ab=(-3,5)-(2,0)=(-5,5),
|ab|=(-5)2+52=52,∠xob=135°
∴此人的位移為「西北52百米」.
⑵t=10分= 16 小時,|v|= |ab|t =302
∴vx=|v|cos135°=-30,vy=|v|sin135°=30,∴v=(-30,30)
⑶∵ac= 610 ab,∴oc=oa+ 35 ab=(2,0)+ 35 (-5,5)=(-1,3)
∴|oc|=10,又tan(18°24+2)= 0.3327+0.00061-0.3327×0.0006 = 13
而tan∠coy= 13 ,∴∠coy=arctan 13 =18°26.
∴少年宮c點相對於廣場中心所處的位置為「北偏西18°26,10百米」處.
評註:以生活中的位移、速度為背景的向量應用題,首先要寫出有關向量,利用向量中的模來求解.本題是向量知識與三角知識的交匯,主要是依託平面向量的模、方位角等通過形和數的相互轉化,實現與三角的有機整合,同時考查三角方面的知識和方法及綜合解題能力.
二、平面向量在力的平衡上的應用
例2 帆船是藉助風帆推動船隻在規定距離內競速的一項水上運動.2023年第2屆奧運會開始列為正式比賽專案, 帆船的最大動力**是"伯努利效應".如果一帆船所受"伯努利效應"產生力的效果可使船向北偏東30º以速度20 km/h行駛,而此時水的流向是正東,流速為20 km/h.若不考慮其它因素,求帆船的速度與方向.
分析: 帆船水中行駛,受到兩個速度影響: 伯努利效應"產生力的效果為使船向北偏東30º,速度是20 km/h,及水的流向是正東,流速為20 km/h.
這兩個速度的和就為帆船行駛的速度.根據題意,建立數學模型,運用向量的座標運算來解決問題.
解:如圖建立直角座標系, "伯努利效應"的速度為v1=20 km/h,水的流速為v2=20 km/h,帆船行駛的速度為v,則v=v1+v2.
由題意可得向量v1的座標為(20cos60o,20sin60o)即v1=(10,10 ),向量v2的座標為v2=(20,0)
則帆船行駛速度v的座標為
v=v1+v2=(10,10 )+(20,0)=(30,10 )
∴|v|= ,∵tanα= ,α為銳角∴α=30o
∴帆船向北偏東行駛.
答: 帆船向北偏東60o行駛,速度為203 km/h.
評註: 在利用向量的座標運算解決生活中有關問題時,先根據情況建立向量模型,利用直角座標系,得到向量的座標,再按照向量座標運演算法則,得出答案,解決實際問題.
三、平面向量的數量積在生活中的應用
例3 某同學購買了x支a型筆,y支b型筆,a型筆的**為m元,b型筆的**為n元.把購買a、b型筆的數量x、y構成數量向量a=(x,y),把**m、n構成**向量b=(m,n).則向量a與b的數量積表示的意義是_______________.
解析: 此題根據購賣a、b兩種型號的筆的數量與**構成了一個二元向量a,b.根據向量的數量積的運算公式可得a•b=xm+yn.
而xm表示購買a型筆所用的錢數;yn表示購買b型筆所用的錢數.所以向量a與b的數量積表示的意義是購買兩種筆所用的總錢數.
評註: 本題把生活中的平常事件轉化為了向量問題,運用向量的數量積一下子解決了購買所用的總錢數.利用這種方法,我們還可以推廣到多種商品,構建多元向量,就可以有序快捷得到購買時所用的總錢數.
同學們可以試一試.
向量在生活中的應用,大多是和座標平面的整合,這時關鍵是確定點的座標,再確定向量的座標.從而達到向量關係與座標關係的互譯,架起了生活與向量之間的橋樑.把向量的基本思想應用到實際生活中,可使我們能夠更加直觀地通過向量視角觀察生活,也讓向量更好地為我們服務,解決更多的實際生活問題
什麼是向量,什麼點陣圖,有什麼用,什麼叫向量圖?什麼叫點陣圖?
智者重生 根據資訊表示方式分為的向量圖和點陣圖。向量圖是用一系列計算指令來表示的圖,因此向量圖是用數學方法描述的圖,本質上是很多個數學表示式的程式語言表達。畫向量圖的時候如果速度比較慢,你可以看到繪圖的過程。你可以把向量圖理解為一個 形狀 比如一個圓,一個拋物線等等,因此縮放不會影響其質量。點陣圖是...
學習好有什麼用啊,學習有什麼用呢?
給爸媽掙面子。考好大學。拿高額獎學金。夠突出的話保送讀研究生或是出國當。或者畢業學校給介紹好工作。學習好很多事情都會很省心首先要宣告,如果你是女生學習好當然有用!從表面來講,但凡成績好的,老師家長都會喜歡,既然大家喜歡你,那麼你的特權自然就多了,成績好了,又是女生,大家當然會把你當寶貝捧在手心了。第...
學習地理有什麼用,學地理有什麼用
半杯紅酒 我高中也是學地理的,是一種興趣才學的.到現在總結下學地理的好處就是 一 豐富自己的知識,走到 都會用的上.我工作在山東出差的,對分析地理方位,人文風俗都有好處 二 提高自己的實用應用.比如你喜歡旅遊的,那. 騎小驢逛地球 瞭解各地地貌文化,尊重文化,理解差異 學習地理有什麼用?學習地理有什...