1樓:我才是無名小將
f(x)可導且連續,f(1)=f(2)=f(3)=0
所以存在x1,x2分別在(1,2)、(2,3)之內,使f'(x1)=f'(x2)=0
f'(x)是二次函式,最多有兩個零點
2樓:指點群豪戲
有兩個根,分別區間(1,2)、(2,3)之間。可以模擬函式的圖象,可以看出f(x)有兩個駐點。
3樓:軒轅無魚
2個,(1,2),(3,4)各一個,做圖象,極值處f'=0
4樓:小小愛學童子
學過羅爾中值定理了吧, 你在三個零點兩兩之間用role中值就可以了
5樓:樂正秀榮泉寅
兩個實根,範圍在(1,2)和(2,3)之間。
根據函式的連續性。因為f(x)在小於1的部分恆小於0,在(1,2)大於0,在(2,3)之間小於0,在大於3的部分恆大於0,所以函式在(1,2)部分必然存在轉折,故出現極值點;同理在(2,3)之間,亦存在極值點,所以兩個根,分別在(2,3),(1,2)之間。
6樓:宰父梅花所姬
f(x)=0得x1=1,x2=2,x3=3f(x)為x的三次多項式,所以f'(x)為二次多項式,f'(x)=0最多有2個實根
f(x)在(1,2)和(2,3)滿足羅爾定理的所有條件,因此f'(x)=0在(1,2)和(2,3)至少有各有一個根,即至少有兩根
綜上可知氦範份既莓煥逢唯撫瀝,f'(x)=0恰有兩根且分別在(1,2)和(2,3)內
7樓:壽興有有茶
方程f(x)的導數就是f(x)處處的斜率,它的導數為零就是說斜率為0,一個曲線的斜率為0的點就是它的極值點(不是最值)。你可以把f(x),把斜率為0帶進去,就可算出有幾個極值點了。。
不用求出函式f(x)=(x-1)(x-2)(x-3)(x-4)的導數,說明方程f'(x)=0有幾個實根,並指出它們所在的區間?
8樓:我是杜鵑
函式f(x)=(x-1)(x-2)(x-3)(x-4),顯然是一個4次方函式。它的定義域是任意實數。該函式在整個實數期間是連續的、處處可導的。
很容易求得方程 f(x)=0 共有且僅有四個解,即函式的影象有4次與x軸相交,交點分別在x軸上的x=1,2,3,4處。函式是x的4次方函式,當x趨近正負無窮大時,函式值都是正無窮大。因此,在(- ∞,1)和(4,+ ∞)區間,函式的影象都是處於x軸的上方直至正無窮大。
函式的一階導數就是函式影象上某點的切線直線的斜率。令函式一階導數等於0的方程,就是要求函式影象上哪些點的切線的斜率平行於x軸方向的問題,平行於x軸方向的切線斜率為0。因為4次方函式的一階導數是一個3次方函式,又因為原函式影象是連續的處處可導的,它的一階導數的3次方函式也是連續的處處可導的。
令原函式的一階導數等於0 的方程是一個3次方方程,它有且僅有3個根。原函式在與x軸相交的4點之間的三段影象中,每一段必然存在著影象的一個極值點,在該極值點的影象切線的斜率為0、切線平行於x軸。從而可得:
方程 f'(x)=0的3個實根分別在區間(1,2),(2,3),(3,4)上。
9樓:古寧鄂碧
如要粗略判斷,可畫出f(x)的草圖,根據單調性可知,f'(x)=0有3個實根,所在區間為(1,2),(2,3)(3,4)。
10樓:查秀愛錢女
導數的實根即導數等於0的x值
顯然f(x)有4個實根,即123
4由微分中值定理
在(1,2)中存在a使f'(a)=[f(1)-f(2)]/1=0同理在(2,3),(3,4)中……
所以f(x)的導數有4-1=3個實根
11樓:韓望亭咎嫻
令f(x)=0則x=1,2,3,4
∴f(1)=f(2)=f(3)=f(4)=0又f(x)在區間[1,2]上連續,在區間〔1,2〕上可導,f(1)=f(2)=0
由羅爾定理可知:
方程f'(x)=0在區間(1,2)至少存在一個實根同理可知:
方程f'(x)=0分別在區間(2,3)(3,4)都至少存在一個實根又f'(x)=0為三次方程,其根至多三個
∴f'(x)=0有三個實根,其區間分別是(1,2),(2,3),(3,4)
不用求函式f(x)=(x-1)(x-2)(x-3)(x-4)的導數,說明方程f′(x)=0有幾個實根,並指出他們的所在的區間,謝謝
12樓:我是杜鵑
函式f(x)=(x-1)(x-2)(x-3)(x-4),顯然是一個4次方函式。它的定義域是任意實數。該函式在整個實數期間是連續的、處處可導的。
很容易求得方程 f(x)=0 共有且僅有四個解,即函式的影象有4次與x軸相交,交點分別在x軸上的x=1,2,3,4處。函式是x的4次方函式,當x趨近正負無窮大時,函式值都是正無窮大。因此,在(- ∞,1)和(4,+ ∞)區間,函式的影象都是處於x軸的上方直至正無窮大。
函式的一階導數就是函式影象上某點的切線直線的斜率。令函式一階導數等於0的方程,就是要求函式影象上哪些點的切線的斜率平行於x軸方向的問題,平行於x軸方向的切線斜率為0。因為4次方函式的一階導數是一個3次方函式,又因為原函式影象是連續的處處可導的,它的一階導數的3次方函式也是連續的處處可導的。
令原函式的一階導數等於0 的方程是一個3次方方程,它有且僅有3個根。原函式在與x軸相交的4點之間的三段影象中,每一段必然存在著影象的一個極值點,在該極值點的影象切線的斜率為0、切線平行於x軸。從而可得:
方程 f'(x)=0的3個實根分別在區間(1,2),(2,3),(3,4)上。
13樓:
因為函式f(x)是連續函式,所以f′(x)=0就是函式f(x)取極值的時候。
函式f(x)經過(1,0)(2,0)(3,0)(4,0),其餘時候不經過x軸,所以它的極值有三個,分別在(1,2)(2,3)(3,4)區域內,也就是導數等於0的根
14樓:匿名使用者
不用求函式f(x)=(x-1)(x-2)(x-3)(x-4)的導數,說明方程f′(x)=0有幾個實根,並指出他們的所在的區間
方程f′(x)=0有3個實根,所在區間分別為(1,2),(2,3),(3,4)
根據f(x)的極值個數即可推斷出f′(x)=0的實根個數
15樓:愛銳鋒
導數那個就不多說了,根據羅爾中值定理:f(x)在區間[a,b]上可導,且f(a)=f(b),那麼存在ξ∈[a,b],f'(ξ)=0,∴f'(x)在[1,2],[2,3],[3,4]上各有一個ξ,f'(ξ)=0
第二個也不難:
方法一:考察f(x)=nb^(n-1)*(x-b),g(x)=x^n-b^n
f(b)=g(b)=0
當x>b>0時,f'(x)=nb^(n-1),g'(x)=nx^(n-1)
∴f'(x)<g'(x)
∴[g(x)-f(x)]'>0,當x>b時,設h(x)=g(x)-f(x)
∴h(b)=0,由拉格朗日中值定理:存在ξ∈[b,a]
h(a)-h(b)=h'(ξ)*(a-b)=h(a)
∵h'(ξ)>0,a-b>0
∴h(a)>0,∴g(a)>f(a)
另一邊:同理設f(x)=a^n-x^n,g(x)=na^(n-1)*(a-b)
即可證。
方法二:a^n-b^n=(a-b)[∑a^i*b^(n-1-i)],i=1,2,…,n-1
∵b^(n-1)=b^i*b^(n-1-i)<a^i*b^(n-1-i)<a^i*a^(n-i-1)=a^(n-1)
∴nb^(n-1)*()a-b<a^n-b^n 16樓: 應該可以解決你的問題 不用求函式f(x)=(x-1)(x-2)(x-3)(x-4)+5的導數 說明方程f′(x)=0有幾個實根 17樓:匿名使用者 f(x)=(x-1)(x-2)(x-3)(x-4),說明f(x)與x軸交點來有四個,分別是x=1,x=2,x=3,x=4,所以源在(1,2)、(2,3)、(3,4)區間內必定存在f'(x)=0,也就是切線斜率為0的點,那麼f'(x)=0就有3個實根,各自區間為(1,2)、(2,3)、(3,4) 不求函式f(x)=x(x+1)(x+2)的導數,判斷方程f'(x)=0有幾個實根,並指出這些根的範圍
5 18樓:匿名使用者 f(x)有三個零點:-2,-1,0 所以,f'(x)=0有兩個實根,一個根位於(-2,-1),一個根位於(-1,0) 答案有誤。 祝你開心!希望能幫到你,如果不懂,請追問,祝學習進步!o(∩_∩)o 19樓:鄭銀偉 ,用描點法,兩個根,第一個(-2,-1),第二個(-1,0),希望能幫到你,如果不會,繼續問我吧 我是杜鵑 函式f x x 1 x 2 x 3 x 4 顯然是一個4次方函式。它的定義域是任意實數。該函式在整個實數期間是連續的 處處可導的。很容易求得方程 f x 0 共有且僅有四個解,即函式的影象有4次與x軸相交,交點分別在x軸上的x 1,2,3,4處。函式是x的4次方函式,當x趨近正負無窮大時,... 我不是他舅 f x x 1 x 2 x 3 x 4 x 5 x 6 f x x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 2 x 3 x 4 ... 暖眸敏 f x x3 x2 tx t f x 3x 2 2x t f x 在區間 1,1 上是增函式 既是x 1,1 f x 0 3x 2 2x t恆成立需3x 2 2x最大值滿足條件即可 3x 2 2x 3 x 1 3 2 1 3 x 1,1 3 x 1 3 2 1 3 5 由5 t得,t 5 四...不用求函式f xx 1 x 2 x 3 x
已知函式f xx 1 (x 2)(x 3)(x 4)(x 5)(x 6)求f (2)導數問題
已知函式f xx3 x2 tx t在區間 1,