初中數學競賽,要用到的定理或公式

時間 2021-08-14 13:16:50

1樓:匿名使用者

公式分類 公式表示式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根與係數的關係 x1+x2=-b/a x1*x2=c/a 注:韋達定理 判別式 b2-4ac=0 注:方程有兩個相等的實根 b2-4ac>0 注:

方程有兩個不等的實根 b2-4ac0 拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py 直稜柱側面積 s=c*h 斜稜柱側面積 s=c'*h 正稜錐側面積 s=1/2c*h' 正稜臺側面積 s=1/2(c+c')h' 圓臺側面積 s=1/2(c+c')l=pi(r+r)l 球的表面積 s=4pi*r2 圓柱側面積 s=c*h=2pi*h 圓錐側面積 s=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 v=1/3*s*h 圓錐體體積公式 v=1/3*pi*r2h 斜稜柱體積 v=s'l 注:其中,s'是直截面面積, l是側稜長 柱體體積公式 v=s*h 圓柱體 v=pi*r2h 初中奧數專題配練習及講解(很全面) http://www.

2樓:匿名使用者

其實老師都會講的

而且高中的無非也就是初中的深入而已,只要你有這個智力,肯定不會有問題

3樓:匿名使用者

a2-b2=(a+b)(a-b)

(a+b)2=a2+b2+2ab

(a-b)2=a2+b2-2ab

4樓:匿名使用者

1、配方法 所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。

配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函式的極值和解析式等方面都經常用到它。 2、因式分解法 因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。

因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定係數等等。 3、換元法 換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較複雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理 一元二次方程ax2+bx+c=0(a、b、c屬於r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函式乃至幾何、三角運算中都有非常廣泛的應用。 韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函式,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。 5、待定係數法 在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的係數,而後根據題設條件列出關於待定係數的等式,最後解出這些待定係數的值或找到這些待定係數間的某種關係,從而解答數學問題,這種解題方法稱為待定係數法。

它是中學數學中常用的方法之一。 6、構造法 在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函式、一個等價命題等,架起一座連線條件和結論的橋樑,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

5樓:匿名使用者

就是那些特別討厭的

證明題 超多的

初中數學競賽常用公式(急)

6樓:全知道和小問號

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑

餘弦定理 b^2=a^2+c^2-2accosb 注:角b是邊a和邊c的夾角

圓的標準方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心座標

圓的一般方程 x^2+y^2+dx+ey+f=0 注:d^2+e^2-4f>0

拋物線標準方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直稜柱側面積 s=c*h 斜稜柱側面積 s=c'*h

正稜錐側面積 s=1/2c*h' 正稜臺側面積 s=1/2(c+c')h'

圓臺側面積 s=1/2(c+c')l=pi(r+r)l 球的表面積 s=4pi*r2

圓柱側面積 s=c*h=2pi*h 圓錐側面積 s=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 v=1/3*s*h 圓錐體體積公式 v=1/3*pi*r2h �

斜稜柱體積 v=s'l 注:其中,s'是直截面面積, l是側稜長

柱體體積公式 v=s*h 圓柱體 v=pi*r2h

以下是借用一樓的.哈!!

1.誘導公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π2-a)=cos(a)

cos(π2-a)=sin(a)

sin(π2+a)=cos(a)

cos(π2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

2.兩角和與差的三角函式

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)

tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

3.和差化積公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)

sin(a)−sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2)

cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.二倍角公式

sin(2a)=2sin(a)cos(b)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)

5.半形公式

sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

6.萬能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)

7.其它公式(推匯出來的 )

a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba

a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab

1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2

回答者:慕雲2006 - 門吏 ** 11-24 16:13

高考數學常用公式

1.德摩根公式 .

2. 3.

. 4.二次函式的解析式的三種形式 ①一般式 ;② 頂點式 ;③零點式 .

5.設 那麼

上是增函式;

上是減函式.

設函式 在某個區間內可導,如果 ,則 為增函式;如果 ,則 為減函式.

6.函式 的圖象的對稱性:①函式 的圖象關於直線 對稱 .②函式 的圖象關於直線 對稱 .

7.兩個函式圖象的對稱性:①函式 與函式 的圖象關於直線 (即 軸)對稱.②函式 與函式 的圖象關於直線 對稱.③函式 和 的圖象關於直線y=x對稱.

8.分數指數冪 ( ,且 ).

( ,且 ).

9. .

10.對數的換底公式 .推論 .

11. ( 數列 的前n項的和為 ).

12.等差數列的通項公式 ;

其前n項和公式 .

13.等比數列的通項公式 ;

其前n項的和公式 或 .

14.等比差數列 : 的通項公式為

; 其前n項和公式為 .

15.分期付款(按揭貸款) 每次還款 元(貸款 元, 次還清,每期利率為 ).

16.同角三角函式的基本關係式 , = , .

17.正弦、餘弦的誘導公式

18.和角與差角公式

; ;. (平方正弦公式);

. = (輔助角 所在象限由點 的象限決定, ).

19.二倍角公式 .

. .20.三角函式的週期公式 函式 ,x∈r及函式 ,x∈r(a,ω, 為常數,且a≠0,ω>0)的週期 ;函式 , (a,ω, 為常數,且a≠0,ω>0)的週期 .

21.正弦定理 .

22.餘弦定理 ; ; .

23.面積定理(1) ( 分別表示a、b、c邊上的高).

(2) .

(3) .

24.三角形內角和定理 在△abc中,有

. 25.平面兩點間的距離公式

= (a ,b ).

26.向量的平行與垂直 設a= ,b= ,且b 0,則

a b b=λa .

a b(a 0) a•b=0 .

27.線段的定比分公式 設 , , 是線段 的分點, 是實數,且 ,則

( ).

28.三角形的重心座標公式 △abc三個頂點的座標分別為 、 、 ,則△abc的重心的座標是 .

29.點的平移公式 (圖形f上的任意一點p(x,y)在平移後圖形 上的對應點為 ,且 的座標為 ).

30.常用不等式:

(1) (當且僅當a=b時取「=」號).

(2) (當且僅當a=b時取「=」號).

(3)(4)柯西不等式

(5)31.極值定理 已知 都是正數,則有

(1)如果積 是定值 ,那麼當 時和 有最小值 ;

(2)如果和 是定值 ,那麼當 時積 有最大值 .

32.一元二次不等式 ,如果 與 同號,則其解集在兩根之外;如果 與 異號,則其解集在兩根之間.簡言之:同號兩根之外,異號兩根之間.

; .33.含有絕對值的不等式 當a> 0時,有

. 或 .

34.無理不等式(1) .

(2) .

(3) .

35.指數不等式與對數不等式 (1)當 時,

; .(2)當 時,

; 36.斜率公式 ( 、 ).

37.直線的四種方程

(1)點斜式 (直線 過點 ,且斜率為 ).

(2)斜截式 (b為直線 在y軸上的截距).

(3)兩點式 ( )( 、 ( )).

(4)一般式 (其中a、b不同時為0).

38.兩條直線的平行和垂直 (1)若 ,

① ;② .

(2)若 , ,且a1、a2、b1、b2都不為零,

① ;② ;

39.夾角公式 .( , , )

( , , ).

直線 時,直線l1與l2的夾角是 .

40.點到直線的距離 (點 ,直線 : ).

41. 圓的四種方程

(1)圓的標準方程 .

(2)圓的一般方程 ( >0).

(3)圓的引數方程 .

(4)圓的直徑式方程 (圓的直徑的端點是 、 ).

42.橢圓 的引數方程是 .

43.橢圓 焦半徑公式 , .

44.雙曲線 的焦半徑公式

, .45.拋物線 上的動點可設為p 或 p ,其中 .

46.二次函式 的圖象是拋物線:(1)頂點座標為 ;(2)焦點的座標為 ;(3)準線方程是 .

47.直線與圓錐曲線相交的弦長公式 或

(弦端點a ,由方程 消去y得到 , , 為直線 的傾斜角, 為直線的斜率).

48.圓錐曲線的兩類對稱問題:

(1)曲線 關於點 成中心對稱的曲線是 .

(2)曲線 關於直線 成軸對稱的曲線是

. 49.「四線」一方程 對於一般的二次曲線 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 即得方程

,曲線的切線,切點弦,中點弦,弦中點方程均是此方程得到.

50.共線向量定理 對空間任意兩個向量a、b(b≠0 ),a‖b 存在實數λ使a=λb.

51.對空間任一點o和不共線的三點a、b、c,滿足 ,

則四點p、a、b、c是共面 .

52. 空間兩個向量的夾角公式 cos〈a,b〉= (a= ,b= ).

53.直線 與平面所成角 ( 為平面 的法向量).

54.二面角 的平面角 或 ( , 為平面 , 的法向量).

55.設ac是α內的任一條直線,且bc⊥ac,垂足為c,又設ao與ab所成的角為 ,ab與ac所成的角為 ,ao與ac所成的角為 .則 .

56.若夾在平面角為 的二面角間的線段與二面角的兩個半平面所成的角是 , ,與二面角的稜所成的角是θ,則有 ;

(當且僅當 時等號成立).

57.空間兩點間的距離公式 若a ,b ,則

= .58.點 到直線 距離 (點 在直線 上,直線 的方向向量a= ,向量b= ).

59.異面直線間的距離 ( 是兩異面直線,其公垂向量為 , 分別是 上任一點, 為 間的距離).

60.點 到平面 的距離 ( 為平面 的法向量, 是經過面 的一條斜線, ).

61.異面直線上兩點距離公式

(兩條異面直線a、b所成的角為θ,其公垂線段 的長度為h.在直線a、b上分別取兩點e、f, , , ).

62.(長度為 的線段在三條兩兩互相垂直的直線上的射影長分別為 ,夾角分別為 )(立幾中長方體對角線長的公式是其特例).

63. 面積射影定理

(平面多邊形及其射影的面積分別是 、 ,它們所在平面所成銳二面角的為 ).

64.尤拉定理(尤拉公式) (簡單多面體的頂點數v、稜數e和麵數f)

65.球的半徑是r,則其體積是 ,其表面積是 .

1.誘導公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π2-a)=cos(a)

cos(π2-a)=sin(a)

sin(π2+a)=cos(a)

cos(π2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

2.兩角和與差的三角函式

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)

tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

3.和差化積公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)

sin(a)−sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2)

cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.二倍角公式

sin(2a)=2sin(a)cos(b)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)

5.半形公式

sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

6.萬能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)

7.其它公式(推匯出來的 )

a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba

a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab

1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2

祝你考個好成績。

高中數學競賽常用好的公式,關於高中數學競賽的書有哪些好的?

表霈堅西華 減法三角法則判 乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,兩個不會為實數,比較大小要不得。複數實數很密切,須注意本質區別。六 排列 組合 二項式定理 加法...

誰把初中物理的所有公式和透鏡成像定理給我整理一下告訴我

沒有時間整理,不過按照力聲熱光電的順序可以自己整理一下。物理初中所有定義 書上有的所有定義和公式 串聯電路 p 電功率 u 電壓 i 電流 w 電功 r 電阻 t 時間 電流處處相等 i1 i2 i總 各支路電流處處相等且等於總電流 總電壓等於各用電器兩端電壓之和 u總 u1 u2 總電壓等於各支路...

簡單的小學 初中數學公式

刑逸焮 提問者 好 小學數學公式大全 第一部分 概念 1 加法交換律 兩數相加交換加數的位置,和不變。2 加法結合律 三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。3 乘法交換律 兩數相乘,交換因數的位置,積不變。4 乘法結合律 三個數相乘,先把前兩個數相乘,或先把後兩...