用積分換元法求dx 2sinx 3cosx 的不定積分

時間 2021-09-14 22:36:26

1樓:夢色十年

用積分換元法求∫dx/(2sin²x+3cos²x)的不定積分過程如下:

換元積分法是求積分的一種方法。它是由鏈式法則和微積分基本定理推導而來的。

在計算函式導數時.複合函式是最常用的法則,把它反過來求不定積分,就是引進中間變數作變數替換,把一個被積表示式變成另一個被積表示式。從而把原來的被積表示式變成較簡易的不定積分這就是換元積分法。

換元積分法有兩種,第一類換元積分法和第二類換元積分法。

擴充套件資料:

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f‘(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

2樓:匿名使用者

可如圖使用湊微分法化簡計算。經濟數學團隊幫你解答,請及時採納。謝謝!

3樓:手機使用者

去問你的數學叫獸吧!

用換元法求不定積分 ∫ dx/根號【(x^2+1)的三次方】dx

4樓:無法____理解

解題過程:

設x=tant,    t=arctanx

dx=1/(cost)^2*dt

原式=∫1/√(tan^2t+1)^3*1/cos^2t*dt

=∫1/√[(sin^2t+cos^2t)/cos^2t]^3*1/cos^2t*dt

=∫cos^3t*1/cos^2t*dt

=∫costdt

=sint+c

=sinarctanx+c

解一些複雜的因式分解問題,常用到換元法,即對結構比較複雜的多項式,若把其中某些部分看成一個整體,用新字母代替(即換元),則能使複雜的問題簡單化,明朗化,在減少多項式項數,降低多項式結構複雜程度等方面有獨到作用。

換元法又稱變數替換法 , 是我們解題常用的方法之一 。利用換元法 , 可以化繁為簡 , 化難為易 , 從而找到解題的捷徑 。

拓展資料

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

高數,定積分的換元法,高數用換元法求不定積分,要過程?

max sinx 2 1 1 1 2 sinx 2 1 1 2 2 2 1 1 1 2 sinx 2 2 2 0 2 dx 1 1 2 sinx 2 0 2 2 2 dx 2 1 1 1 2 sinx 2 1 1 1 1 2 sinx 2 1 0 2 dx 1 1 2 sinx 2 0 2 dx 2...

用第一換元法求不定積分

主要有換元法,分部積分法。用換元法求不定積分技巧性比較強,需要有一定的觀察能力和感覺,一般來說,帶根號的就想辦法 用三角代換 去掉根號。 晴天雨絲絲 內容多得恐怖,但懸賞分。 1.令 2x u,則 x u 2 2,dx udu i udu u 1 1 1 u 1 du u ln u 1 c 2x l...

用第二換元法求不定積分,需解題過程

解 被積函式 x 2 a 2 x 1 a x 2 設 a x sin 則 x a sin 那麼 x 2 a 2 xdx 1 a x 2 dx 1 sin 2 d a sin cos acos sin 2 d a cot 2 d a 1 csc 2 d a cot c 注意 用到了 d cot csc...