為什麼不能因為f(x)是奇函式得出0?6 8題

時間 2021-08-11 17:17:12

1樓:

對於無窮區間上的奇函式並不適用有限區間的性質。把上下限均為無窮的廣義積分拆成兩個廣義積分的和,比如以0為分界點拆成(-∞,0)和(0,+∞),這兩個積分都存在,才能說原來的積分存在且為0!無論 f(x) 是不是奇函式,當且僅當 ∫<-∞,0>f(x)dx 和 ∫<0,+∞>f(x)dx 同時都收斂,∫<-∞,+∞>f(x)dx才收斂。

否則∫<-∞,+∞>f(x)dx發散。

2樓:匿名使用者

周期函式 週期為4 因為f(x-1)是奇函式由 奇函式關於原點對稱 和 《附》中第0條,得到f(x)關於點 (1,0)對稱同理 f(x)關於點(-1,0)對稱由《附》中第14條結論,得到 f(x)是週期為4的周期函式。 附: 關於函式的週期性和對稱性的幾條結論:

0. f(x+t)可由f(x)向左平移t個單位得到(t為負表示向右平移) 1.若 f(x+t)=f(x), 則f(x)是以 t 為週期的函式 (可逆推) 2.

若 f(x+a)=f(x+b), 則f(x)是以 |a-b|為週期的函式 (可逆推) 3.若 f(x+t)=-f(x), 則f(x)是以 2t 為週期的函式 4.若 f(x+t)=1/f(x), 則f(x)是以 2t 為週期的函式 5.

若 f(x+t)=-1/f(x),則f(x)是以 2t 為週期的函式 6.若 f(t+x)=f(t-x), 則f(x)影象的對稱軸為 直線x=t 且f(x+t)為偶函式 (可逆推) 7.若 f(2t-x)=f(x), 則f(x)影象的對稱軸為 直線x=t (可逆推) 8.

若 f(x+a)=f(b-x), 則f(x)影象的對稱軸為 直線x=(a+b)/2 (可逆推) 9.若 f(t+x)=-f(t-x),則f(x)影象的對稱中心為 點(t,0) (可逆推) 10.若 f(2t-x)=-f(x), 則f(x)影象的對稱中心為 點(t,0) (可逆推) 11.

若 f(x+a)=-f(b-x),則f(x)影象的對稱中心為 點((a+b)/2,0) (可逆推) 12.若 t為f(x)週期, 則 nt 也為f(x)週期(n為整數,n可以為負數) 13.若 f(x)有兩個對稱軸:

x=a與x=b, 則f(x)是以 2|a-b| 為週期的函式 14.若 f(x)有兩個對稱中心:(a,m)與(b,m), 則f(x)是以 2|a-b| 為週期的函式 15.

若 f(x)有一個對稱軸:x=a 和一個對稱中心:(b,m),則f(x)是以 4|a-b| 為週期的函式證明:

1. 定義,不用證。 2.

f(x+a)=f(x+b) 用 x-a 代換x 得 f[(x-a)+a]=f[(x-a)+b] 即f(x)=f(x+b-a) 所以f(x)週期為b-a, 我們習慣上取週期為正,故加絕對值,所以是 |a-b| 3. f(x+t)=-f(x) 用 x+t 代換x 得 f[(x+t)+t]=-f(x+t)=f(x) 即 f(x+2t)=f(x) ,即 f(x)是以 2t 為週期的函式 4. 略。

仿照3 5. 略。仿照3 6.

不用證。這是一個等價條件,即 f(t+x)=f(t-x) (這三個符號是一起的,意思是等價於) f(x)影象的對稱軸為 直線 x=t 可以想象:t+x即在t的右邊距離為x、t-x即在t的左邊距離為x,也就是說在t左右兩邊距t 相等的位置(t+x和t-x)的函式值f(t+x)和f(t-x)也相等 顯然函式影象關於x=t是對稱的 7.

f(2t-x)=f(x) 用 x+t 代換x 得 f[2t-(x+t)]=f(x+t) 即f(t-x)=f(t+x) 由6得 f(x)影象的對稱軸為 直線x=t 8. f(x+a)=f(b-x) 用 x-a 代換x 得 f[(x-a)+a]=f[b-(x-a)] 即f(x)=f(b+a-x) 由7得 f(x)影象的對稱軸為 直線x=(a+b)/2 9. 不用證。

仿照6 10. 略。仿照7 11.

略。仿照8 12. 不用證。

13. f(x)有兩個對稱軸:x=a與x=b。

由7得 f(2a-x)=f(x)且f(2b-x)=f(x) 所以f(2a-x)=f(2b-x) 用 -x 代換 x 得 f(2a+x)=f(2b+x) 由2得 f(x)是以 2|a-b| 為週期的函式 14. 令g(x)=f(x)-m ,顯然 f(x)與g(x)的對稱性和週期性都相同, 故 g(x)有兩個對稱中心: (a,0)與(b,0)。

仿照13的方法 可以得到 g(x)是以 2|a-b| 為週期的函式, 故 f(x)是以 2|a-b| 為週期的函式。 15. 略。

仿照14

這道題已知該函式是奇函式為什麼不能利用f(0)=0求得a,而要利用f(-x)=-f(x)求得a?

3樓:匿名使用者

f(0)是沒有意義bai的因為分母是0

如果du

在x=0處函式的值

zhif(0)存在dao,則因為f(-0)=-f(0)--->2f(0)=0--->f(0)=0,是一定的。版

但是如果權在x=0時函式不存在,當然就沒有f(0)=0.例如反比例函式y=k/x,的定義域是x<>0.所以f(0)<>0而不存在。

可以用f(-1) +f(1) =0,解得,a=1/2.

為什麼奇函式 f(0)一定等於0

4樓:匿名使用者

因為 f(-x)=-f(x),將x=0代入,得baif(0)=-f(0),從

du而f(0)=0。

奇函式zhi特點介紹:dao

1、奇函式圖象關於原點(

內0,0)對稱。

2、奇函式的定義域必須關容於原點(0,0)對稱,否則不能成為奇函式。

4、設 f(x)在定義域i 上可導,若f(x)在i上為奇函式,則f'(x)在 i上為偶函式。

即f(-x)= - f(x)對其求導f'(x)=[-f(-x)]'(-x)'=-f'(-x)(-1)=f'(-x)

5樓:似水

因為奇函式關於原點對稱,f{x)+f{_x)=o而原點則為f(o)十fo=○即f(o)=0

6樓:匿名使用者

這話說的不準確。應該是:如果奇函式f(x)在x=0處有定義,必有f(0)=0

因為f(-x)=-f(x)

把x=0代入,得f(0)=-f(0)

7樓:天線寶寶

1.f(0)可能沒有意來

義.如函式 f(x)=1/x,(表示x分之自一)它顯然是奇bai函du數zhi,但f(0)沒有意義dao.

2.偶函式時,f(0)也可能是0.如 f(x)=x²是偶函式,且f(0)=0

3.只有當奇函式的定義域中包含0時,f(0)=0.

因為 f(-x)=-f(x)

將 x=0代入 ,得 f(0)=-f(0),從而 f(0)=0

8樓:紅塵情薄

如果奇函式的定義域裡包括x=0,那麼才有f(0)=0,例如題中告訴你奇函式定義域x屬於r,因為它是關於原點對稱的所以才有f(0)=0

f(x)是f(x)的一個原函式,為什麼f(x)是奇函式能推出f(x)是偶函式?能不能證明一下

9樓:不是苦瓜是什麼

f'(x)=f(x)=>f(x)=∫f(x)dx奇函式:f(-x)=-f(x)

f(-x)=∫f(-x)d(-x)=∫-f(x)d(-x)=∫f(x)dx=f(x)

此時,f(x)為偶函式

1、如果知道函式表示式,對於函式f(x)的定義域內任意一個x,都滿足 f(x)=f(-x) 如y=x*x;

2、如果知道影象,偶函式影象關於y軸(直線x=0)對稱。

3、定義域d關於原點對稱是這個函式成為偶函式的必要不充分條件。

例如:f(x)=x^2,x∈r,此時的f(x)為偶函式.f(x)=x^2,x∈(-2,2](f(x)等於x的平方,-2

10樓:匿名使用者

簡單理解:因為fx奇,求積分後fx+c偶函式上下平移還是偶函式。而fx為偶,積分後fx+c得到積函式上下平移後不一定是奇函式。原諒畫不了圖,自已畫吧。

11樓:冷心灬

f(x)是f(x)的一bai個原函式,f(x)是奇du函式,則f(-x)zhi=-f(x)dao

令g(x)=f(x)-f(-x),且g(x)可內導則g'(x)=f(x)+f(-x)=0

則g(x)為常容函式,若f在0點有定義,g(x)=g(0)=f(0)-f(-0)=0

則f(x)=f(-x),f是偶函式

f必須在0處有定義才能推出是偶函式

為什麼奇函式f(0)=0不能在大題用

12樓:煉焦工藝學

因為奇函式f(0)不一定等於0啊

例如:反比例f(x)=1/x,肯定是奇函式,但f(0)卻沒意義。

為什麼f(x)在定義域上是奇函式就一定有f(0)=0???

13樓:匿名使用者

既然是在定義域copyr上,那麼函式在x=0處也是有定bai義的因為du

奇函式滿足f(-x)=-f(x)

將x=0帶入得到

f(-0)=-f(0)

得到f(0)=-f(0)

於是就zhi

可以得dao到

2f(0)=0

f(0)=0

當然,對於在x=0處無定義的奇函式,也就不存在f(0)咯,這點要特別注意

選擇題就喜歡考這個

14樓:匿名使用者

不一定啊bai,也可

以在x=0這點無定義du

。因為f(x)=-f(-x)zhi。如dao果f(版x)在x=0這點有定權義。

那麼f(-0)=-f(0)

但是-0=0,所以f(-0)=f(0)=-f(0)所以f(0)=0

你的圖形,在x=0這點,有兩個函式值對應,不符合函式的定義。所以不正確。

15樓:數理與生活

奇函式關於原點對稱。

f(-x) = -f(x)

例如:在定義域r上,

f(-3) = -f(3)

f(-2) = -f(2)

f(-1) = -f(1)

因為,內函式過 (0,0) 點。容

所以,f(0) = 0 。

16樓:匿名使用者

看課本 奇函式的定義

17樓:譙風己芷文

f(x)為奇抄

函式,又f(-1)=0,所以

若f x 1 是奇函式,為什麼f x 1f x

卓宵歧吟懷 奇函式與偶函式的性質中的研究物件都要指的單獨變數x本身的改變。辨析 1 若f x 為奇函式,則f x 1 f x 1 2 若f x 1 為奇函式,則f x 1 f x 1 上述兩式均是正確的,需要慢慢體會,慢慢來! 智慧和諧糟粕 f x 1 是奇函式,即f x 1 的影象關於原點 0,0...

f x 0為什麼既是奇函式又是偶函式

我不是他舅 f x 0就是x軸,同影象上看出,他關於y軸對稱,同時繞原點旋轉180度,和原來影象重合,所以關於原點對稱 有定義域是r,關於原點對稱,所以既是奇函式又是偶函式從定義上來說 f x 0,因為0 0,0 0 所以f x f x 和f x f x 同時成立且定義域是r,關於原點對稱,所以既是...

導數是偶函式為什麼推不出原函式是奇函式

假面 因為存在常數項,可以舉反例 f x 3 x 2是偶函式,原函式如果是f x x 3就是奇函式,但是原函式也可能是f x x 3 1,那就不是奇函式了。導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函...