真心請教有限域問題,代數高手不吝賜教,高分奉送

時間 2021-09-16 03:15:51

1樓:匿名使用者

我來給你解答。

第一個問題,gf(8)是怎麼構造的。

域有兩類,有限域和無限域,這既是根據域中元素的個數來劃分的,也是根據域的特徵來劃分的。如果一個域的特徵是0,那麼這個域是無限域,比如q,c。如果域的特徵是p,那麼這個域就是有限域,並且域中元素的個數一定是p^n個,這裡p是素數。

對於有限域gf(q)的構造,如果q是素數,那麼模q的剩餘類環就是需要構造的域。否則,如果q是素數方冪,那麼gf(q)同構於gf(p)[x]/f(x),f(x)是gf(p)上的不可約n次多項式。

說這個可能你不太明白,用你的例子來說更具體。

gf(8)=gf(2^3),為了構造這個域,需要找一個在gf(2)上不可約的三次多項式,比如f(x)=x^3+x+1(所謂在gf(2)上不可約,就是0,1都不是這個多項式的根),那麼gf(2)[x]/f(x)就是gf(8).把它的元素都寫出來

gf(2)[x]/f(x)=

寫出來有8個元素.

他們的運算都按照模掉f(x)來加,乘。

第二個問題

本原元的個數,gf(8)的乘法群是8-1=7階迴圈群,那麼本原元的個數就是phi(7)=6,這裡phi是尤拉函式。

希望你能看明白,如果有問題可以再討論。

2樓:匿名使用者

我也在自學這個看不太明白:

抽象代數,

不知道與高斯17邊形理論以及5次方程的解是否有關係

3樓:

給你推薦本書吧

the new english-chinese subjects vocabulary,復旦大學出版社,方鴻輝。

4樓:

這個你可以去問你的老師~在這不好說

老師拿來就是問問題的!別浪費資源啊~

哈哈~~~~

高數線性代數問題,積分,高數線性代數問題,積分?

根號裡,提出公因子,得 9 sint cost 2 cost 2 sint 2 9 sint cost 2 再開方出去,就得到下一行了。 提取公因式後發現sin 2 cos 2,然後就是根號下平方去根號,這個上下限變成pai嗎?感覺是pai 2 9cos sin t 9sin cos t 9sin ...

劉老師,請教線性代數問題

初高中本科數學藏經閣 特解 1,2,2,1 t代入ax b得到a1 2a2 2a3 a4 b 1 通解 1,2,4,0 t代入ax 0得到a1 2a2 4a3 0 2 ax b的基礎解系是1維的,所以a的秩是3,a1,a2,a3,a4 線性相關且秩為3,再根據 2 式則知道a1,a2,a3兩兩必定線...

請教戀愛高手問題真心求教,請教戀愛高手一個問題 真心求教

你可以叫他婷婷,小婷,都可以啊,稱呼嘛,其實沒那麼多講究的,即使你叫她全名也沒什麼,就像她怎麼稱呼你,你也沒那麼多的所謂吧,嘿嘿,果然戀愛中的人都是小心翼翼的。要說在稱呼上討好她的話,你可以在有其他人在的時候對她一個稱呼,私下的時候你對她用個比較親密的稱呼,這樣可以襯托你們的關係嘛。新交女朋友的話更...