1樓:
指數計算公式:
對數運算公式:
如果a>0,a≠1,m>0,n>0,那麼
1、loga(mn)=logam+logan2、logamn=logam-logan
3、logamn=nlogam (n∈r)
2樓:123劍
指數
指數在數學中代表著次方。
具體的說,指數是有理數乘方的一種運算形式,它表示的是幾個相同因數相乘的關係如:
2的3次方=2×2×2=8。2的3次方這裡2是底數;3是指數;8是冪。
計算方法:
①同底數冪的乘法:同底數冪相乘,底數不變,指數相加。
②同底數冪的除法:同底數冪相除,底數不變,指數相減。
③冪的冪,底數不變,指數相乘。
④冪的乘方(a^m)^n=a^(mn),與積的乘方(ab)^n=a^nb^n。
指數函式
一般地,形如y=a^x(a>0且a≠1) (x∈r)的函式叫做指數函式(exponential function) 。也就是說以指數為自變數,底數為大於0且不等於1的常量的函式稱為指數函式,它是初等函式中的一種。
對數
定義如果a的x次方等於n(a>0,且a不等於1),那麼數x叫做以a為底n的對數(logarithm),記作x=logan。其中,a叫做對數的底數,n叫做真數。
①特別地,我們稱以10為底的對數叫做常用對數(common logarithm),並記為lg。
②稱以無理數e(e=2.71828...)為底的對數稱為自然對數(natural logarithm),並記為ln。
③零沒有對數。
④在實數範圍內,負數無對數。在複數範圍內,負數是有對數的。
計算公式:
對數函式,指數函式,冪函式計算公式
3樓:無敵的地雷
對數函式:一般地,函式y=logax(a>0,且a≠1)叫做對數函式,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函式,叫對數函式。
指數函式:y=a^x,(a>0且a≠1)
冪函式:一般地.形如y=xα(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。
例如函式y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0時x≠0)等都是冪函式。
4樓:我是hu呀
對數函式計算公式:y=log(a)x,(其中a是常數,a>0且a不等於1),它實際上就是指數函式的反函式,可表示為x=a^y。
指數函式計算公式:一般形式為y=a^x(a>0且≠1) (x∈r)。
冪函式計算公式:一般地,形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式。
拓展資料:
一般地,對數函式以冪(真數)為自變數,指數為因變數,底數為常量的函式。
如果ax=n(a>0,且a≠1),那麼數x叫做以a為底n的對數,記作x=logan,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。
一般地,函式y=logax(a>0,且a≠1)叫做對數函式,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函式,叫對數函式。
指數函式是重要的基本初等函式之一。一般地,y=a^x函式(a為常數且以a>0,a≠1)叫做指數函式,函式的定義域是 r 。
一般地.形如y=x^α(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x0、y=x1、y=x2、y=x-1(注:
y=x-1=1/x y=x0時x≠0)等都是冪函式。
5樓:0風之化身
^對數函式的計算公式:y=log(a)x,(其中a是常數,a>0且a不等於1)
指數函式的計算公式:y=a^x函式(a為常數且以a>0,a≠1)
冪函式的計算公式:y=x^a(a為常數)
拓展資料:
一般地,如果a(a大於0,且a不等於1)的b次冪等於n(n>0),那麼數b叫做以a為底n的對數,記作log an=b,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。一般地,函式y=log(a)x,(其中a是常數,a>0且a不等於1)叫做對數函式,它實際上就是指數函式的反函式,可表示為x=a^y。因此指數函式裡對於a的規定,同樣適用於對數函式。
指數函式是數學中重要的函式。應用到值e上的這個函式寫為exp(x)。還可以等價的寫為e,這裡的e是數學常數,就是自然對數的底數,近似等於 2.
718281828,還稱為尤拉數。一般地,y=a^x函式(a為常數且以a>0,a≠1)叫做指數函式,函式的定義域是 r 。
一般的,形如y=x^a(a為實數)的函式,即以底數為自變數,冪為因變數,指數為常量的函式稱為冪函式。例如函式y=x y=x、y=x、y=x(注:y=x=1/x y=x時x≠0)等都是冪函式。
當a取非零的有理數時是比較容易理解的,而對於a取無理數時,初學者則不大容易理解了。
因此,在初等函式裡,我們不要求掌握指數為無理數的問題,只需接受它作為一個已知事實即可,因為這涉及到實數連續性的極為深刻的知識。
6樓:
lnx+lny=lnxy
lnx-lny=ln(x/y)
lnx^n=nlnx
a^x.a^y=a^(x+y)
a^x/a^y=a^(x-y)
(a^x)n=a^(nx)
(x+y)²=x²+2xy+y²
(x-y)²=x²-2xy+y²
....
7樓:凌璃鳶
y=log(a)x,(其中a是常數,a>0且a不等於1)
y=a^x,(a>0且a≠1)
y=ax(a為實數)
8樓:匿名使用者
有個bai總du結挺zhi
好的dao,回全面答
急求指數函式和對數函式的運算公式 20
9樓:雨後彩虹
指數函式的運算公式:
指數函式的一般形式為
(a>0且≠1) (x∈r),要想使得x能夠取整個實數集合為定義域,則只有使得a>0且a≠1。
對數函式的運算公式:
換底公式
指系互換
倒數鏈式
通常我們將以10為底的對數叫常用對數(common logarithm),並把log10n記為lgn。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logen 記為in n。
擴充套件資料
同底的對數函式與指數函式互為反函式。
當a>0且a≠1時,ax=n。
x=㏒an。
關於y=x對稱。
對數函式的一般形式為 y=㏒ax,它實際上就是指數函式的反函式(圖象關於直線y=x對稱的兩函式互為反函式),可表示為x=ay。
因此指數函式裡對於a的規定(a>0且a≠1),右圖給出對於不同大小a所表示的函式圖形:關於x軸對稱、當a>1時,a越大,影象越靠近x軸、當0可以看到,對數函式的圖形只不過是指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。
10樓:繆秀雲千酉
1對數的概念
如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.
由定義知:
①負數和零沒有對數;
②a>0且a≠1,n>0;
③loga1=0,logaa=1,alogan=n,logaab=b.
特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718
28…)為底的對數叫做自然對數,記作logen,簡記為lnn.
2對數式與指數式的互化
式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)
3對數的運算性質
如果a>0,a≠1,m>0,n>0,那麼
(1)loga(mn)=logam+logan.
(2)logamn=logam-logan.
(3)logamn=nlogam
(n∈r).
問:①公式中為什麼要加條件a>0,a≠1,m>0,n>0?
②logaan=?
(n∈r)
③對數式與指數式的比較.(學生填表)
式子ab=nlogan=b名稱a—冪的底數
b—n—a—對數的底數
b—n—運算性
質am·an=am+n
am÷an=
(am)n=
(a>0且a≠1,n∈r)logamn=logam+logan
logamn=
logamn=(n∈r)
(a>0,a≠1,m>0,n>0)
難點疑點突破
對數定義中,為什麼要規定a>0,,且a≠1?
理由如下:
①若a<0,則n的某些值不存在,例如log-28?
②若a=0,則n≠0時b不存在;n=0時b不惟一,可以為任何正數?
③若a=1時,則n≠1時b不存在;n=1時b也不惟一,可以為任何正數?
為了避免上述各種情況,所以規定對數式的底是一個不等於1的正數?
解題方法技巧
1(1)將下列指數式寫成對數式:
①54=625;②2-6=164;③3x=27;④13m=5?73.
(2)將下列對數式寫成指數式:
①log1216=-4;②log2128=7;
③log327=x;④lg0.01=-2;
⑤ln10=2.303;⑥lgπ=k.
解析由對數定義:ab=n?logan=b.
解答(1)①log5625=4.②log2164=-6.
③log327=x.④log135.73=m.
解題方法
指數式與對數式的互化,必須並且只需緊緊抓住對數的定義:ab=n?logan=b.(2)①12-4=16.②27=128.③3x=27.
④10-2=0.01.⑤e2.303=10.⑥10k=π.
2根據下列條件分別求x的值:
(1)log8x=-23;(2)log2(log5x)=0;
(3)logx27=31+log32;(4)logx(2+3)=-1.
解析(1)對數式化指數式,得:x=8-23=?
(2)log5x=20=1.
x=?(3)31+log32=3×3log32=?27=x?
(4)2+3=x-1=1x.
x=?解答(1)x=8-23=(23)-23=2-2=14.
(2)log5x=20=1,x=51=5.
(3)logx27=3×3log32=3×2=6,
∴x6=27=33=(3)6,故x=3.
(4)2+3=x-1=1x,∴x=12+3=2-3.
解題技巧
①轉化的思想是一個重要的數學思想,對數式與指數式有著密切的關係,在解決有關問題時,經常進行著兩種形式的相互轉化.
②熟練應用公式:loga1=0,logaa=1,alogam=m,logaan=n.3
已知logax=4,logay=5,求a=〔x·3x-1y2〕12的值.
解析思路一,已知對數式的值,要求指數式的值,可將對數式轉化為指數式,再利用指數式的運算求值;
思路二,對指數式的兩邊取同底的對數,再利用對數式的運算求值?
解答解法一∵logax=4,logay=5,
∴x=a4,y=a5,
∴a=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.
解法二對
高一數學對數函式的幾個推導公式,對數函式幾個基本公式的推導?
天才富子 log a m n log a m m m m n個m log a m log a m log a m log a m n個log a m nlog a m log a n log a b log b n log b n log a b log b n log a a log b a lo...
指出對數函式與指數函式的性質
流星雨 指數函式與對數函式的總結性質10 有獎勵寫回答共3個回答 矮小天使 ta獲得超過1304個贊 聊聊關注成為第2位粉絲 高考數學基礎知識彙總 第一部分 集合 1 含n個元素的集合的子集數為2 n,真子集數為2 n 1 非空真子集的數為2 n 2 2 注意 討論的時候不要遺忘了 的情況。3 第二...
對數函式是偶函式麼?指數函式呢
周冰薇六明 我來回答,1.空集是任何集合的子集,是任何非空集合的真子集這句話是對的.中有三個元素,它的子集個數是2 3 8個,不是4個真子集個數是8 1 7個 2.如果a可以推出b,那麼b是a的必要條件,a是b的充分條件3.請寫出對數函式 指數函式的奇偶性和單調性對數函式f x log a x若0 ...