三角函式的公式推導

時間 2021-09-09 05:22:12

1樓:匿名使用者

推導公式:(a+b+c)/(sina+sinb+sinc)=2r(其中,r為外接圓半徑)

由正弦定理有

a/sina=b/sinb=c/sinc=2r

所以a=2r*sina

b=2r*sinb

c=2r*sinc

加起來a+b+c=2r*(sina+sinb+sinc)帶入

(a+b+c)/(sina+sinb+sinc)=2r*(sina+sinb+sinc)/(sina+sinb+sinc)=2r

兩角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-cosasinb

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota)

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

sin2a=2sina?cosa平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·商的關係:

tanα=sinα/cosαcotα=cosα/sinα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

常用的誘導公式有以下幾組:

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

一般的最常用公式有:

sin(a+b)=sina*cosb+sinb*cosa

sin(a-b)=sina*cosb-sinb*cosa

cos(a+b)=cosa*cosb-sina*sinb

cos(a-b)=cosa*cosb+sina*sinb

tan(a+b)=(tana+tanb)/(1-tana*tanb)

tan(a-b)=(tana-tanb)/(1+tana*tanb)

平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關係:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等於角a的對邊比斜邊,

餘弦等於角a的鄰邊比斜邊

正切等於對邊比鄰邊,

三角函式恆等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

部分高等內容

·高等代數中三角函式的指數表示(由泰勒級數易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此時三角函式定義域已推廣至整個複數集。

·三角函式作為微分方程的解:

對於微分方程組y=-y'';y=y'''',有通解q,可證明

q=asinx+bcosx,因此也可以從此出發定義三角函式。

補充:由相應的指數表示我們可以定義一種類似的函式——雙曲函式,其擁有很多與三角函式的類似的性質,二者相映成趣。

特殊三角函式值

a0`30`45`60`90`

sina01/2√2/2√3/21

cosa1√3/2√2/21/20

tana0√3/31√3none

cotanone√31√3/30

三角函式的計算

冪級數c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函式,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒式(冪級數法):

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

實用冪級數:

ex=1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)=x-x2/3+x3/3-...(-1)k-1*xk/k+...(|x|<1)

sinx=x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+...(-∞

cosx=1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+...(-∞

arcsinx=x+1/2*x3/3+1*3/(2*4)*x5/5+...(|x|<1)

arccosx=π-(x+1/2*x3/3+1*3/(2*4)*x5/5+...)(|x|<1)

arctanx=x-x^3/3+x^5/5-...(x≤1)

sinhx=x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+...(-∞

coshx=1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+...(-∞

arcsinhx=x-1/2*x3/3+1*3/(2*4)*x5/5-...(|x|<1)

arctanhx=x+x^3/3+x^5/5+...(|x|<1)

傅立葉級數(三角級數)

f(x)=a0/2+∑(n=0..∞)(ancosnx+bnsinnx)

a0=1/π∫(π..-π)(f(x))dx

an=1/π∫(π..-π)(f(x)cosnx)dx

bn=1/π∫(π..-π)(f(x)sinnx)dx

注意:正切也可以表示為「tg」如:tana=tga

sin2a=2sinacosa

cos2a=cosa^2-sina^2

=1-2sina^2

=2cosa^2-1

tan2a=2tana/1-tana^2

眾所周知,在數學和物理中,三角函式是一個重要的工具,以下是一些推導公式,希望對大家有作用平方關係:  sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2   tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2  cot^2(α)+1=csc^2(α)  ·積的關係:  sinα=tanα*cosα  cosα=cotα*sinα  tanα=sinα*secα   cotα=cosα*cscα  secα=tanα*cscα   cscα=secα*cotα  ·倒數關係:

  tanα·cotα=1  sinα·cscα=1  cosα·secα=1   直角三角形abc中,   角a的正弦值就等於角a的對邊比斜邊,   餘弦等於角a的鄰邊比斜邊   正切等於對邊比鄰邊,  ·三角函式恆等變形公式  ·兩角和與差的三角函式:  cos(α+β)=cosα·cosβ-sinα·sinβ  cos(α-β)=cosα·cosβ+sinα·sinβ  sin(α±β)=sinα·cosβ±cosα·sinβ  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)  ·三角和的三角函式:  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)  ·輔助角公式:

  asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中  sint=b/(a^2+b^2)^(1/2)  cost=a/(a^2+b^2)^(1/2)  tant=b/a  asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b  ·倍角公式:  sin(2α)=2sinα·cosα=2/(tanα+cotα)  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)  tan(2α)=2tanα/[1-tan^2(α)]  ·三倍角公式:  sin(3α)=3sinα-4sin^3(α)  cos(3α)=4cos^3(α)-3cosα  ·半形公式:

  sin(α/2)=±√((1-cosα)/2)  cos(α/2)=±√((1+cosα)/2)  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα  ·降冪公式  sin^2(α)=(1-cos(2α))/2=versin(2α)/2  cos^2(α)=(1+cos(2α))/2=covers(2α)/2  tan^2(α)=(1-cos(2α))/(1+cos(2α))  ·萬能公式:  sinα=2tan(α/2)/[1+tan^2(α/2)]  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]  tanα=2tan(α/2)/[1-tan^2(α/2)]  ·積化和差公式:  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]  ·和差化積公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]  ·推導公式  tanα+cotα=2/sin2α  tanα-cotα=-2cot2α  1+cos2α=2cos^2α  1-cos2α=2sin^2α  1+sinα=(sinα/2+cosα/2)^2  ·其他:  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2  tanatanbtan(a+b)+tana+tanb-tan(a+b)=0  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx  證明:

  左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)  =[sin(n+1)x+sinnx-sinx]/2sinx=右邊  等式得證  sinx+sin2x+...

+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx  證明:  左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)  =[cos2x-cos0+cos3x-cosx+...

+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊  等式得證 編輯本段三角函式的角度換算  公式一:   設α為任意角,終邊相同的角的同一三角函式的值相等:   sin(2kπ+α)=sinα   cos(2kπ+α)=cosα   tan(2kπ+α)=tanα   cot(2kπ+α)=cotα   公式二:

  設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   公式三:   任意角α與 -α的三角函式值之間的關係:

  sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四:   利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五:

  利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六:   π/2±α及3π/2±α與α的三角函式值之間的關係:

  sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   (以上k∈z)

三角函式公式,三角函式公式大全

1 銳角三角函式定義 銳角角a的正弦 sin 餘弦 cos 和正切 tan 餘切 cot 以及正割 sec 餘割csc 都叫做角a的銳角三角函式。正弦 sin 等於對邊比斜邊 餘弦 cos 等於鄰邊比斜邊 正切 tan 等於對邊比鄰邊 餘切 cot 等於鄰邊比對邊 正割 sec 等於斜邊比鄰邊 餘割...

最全三角函式公式,三角函式公式大全

平方關係 sin 2 cos 2 1 cos 2a cos 2 a sin 2 a 1 2sin 2 a 2cos 2 a 1 sin 2a 2sin a cos a tan 2 1 1 cos 2 2sin 2 a 1 cos 2a cot 2 1 1 sin 2 a 積的關係 sin tan c...

初中的三角函式公式,初中三角函式公式表

以反正弦三角函式計算公式為例 arcsinx arcsiny arcsin x 1 y2 y 1 x2 xy 0或x2 y2 1,arcsinx arcsiny arcsin x 1 y2 y 1 x2 x 0且y 0且x2 y2 1arcsinx arcsiny arcsin x 1 y2 y 1...