1樓:御欣然
試題分析:(1)由垂線段最短,可知過點m作mn⊥ac於點n,則此點n即為所求。由題意可首先求得∠amc是直角,然後根據含30°的直角三角形的性質,即可求得答案.
答案:過點m作mn⊥ac於點n,則點n即為所求.
(東邊為e,北邊為d,c座標線西邊為b)
∵∠eam=60°,∠eac=30°,∴∠cam=30°.∴∠amn=60°.
又∵c處看m點為北偏西60°,∴∠mcb=30°.
∵∠eac=30°,∴∠bca=30°.
∴∠mca=∠mcb+∠bca=60°.∴∠amc=90°,∠mac=30°.在rt三角形中30°所對的邊為斜邊的一半
∴mc=1/2ac=1/2×4000=2000(米),∠cmn=30°.
∴nc=1/2mc=1000(米)
∴mn=根號下2000平方-1000平方=1732(米)
∴n點的位置為mn⊥ac,最短路線長為1732米
2樓:匿名使用者
過m作mn⊥ac於n,則n為所求。
由題意:∠amc=90°,∠mac=30°,∴mc=1/2ac=2000米,
在rtδcmn中,∠acm=60°,
∴∠cmn=30°,
∴cn=1/2mc=1000米,
∴mn=√3cn=1000√3≈1732米。答:
3樓:misshappy是我
三角函式是數學中常見的一類關於角度的函式。也可以說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。
在數學分析中,三角函式也被定義為無窮級限或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是複數值。
常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。
三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲餘弦函式等等。
三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。
4樓:張騰龍
20解:根據題意得:
∠a=30°,∠c=60°,∠m=90°,ac=4000,mn⊥ac∴cm=ac/2=2000
∴mn=cmxsin∠c=2000x√3/2=1000√3≈1732(米)
cn=cm/2=1000(米)
初中數學三角函式公式
5樓:人設不能崩無限
關於初中三角函式公式如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
6樓:匿名使用者
三角函式公式
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
sin30°=1/2
sin45°=根號2/2
sin60°=根號3/2
cos30°=根號3/2
cos45°=根號2/2
cos60°=1/2
tan30°=根號3/3
tan45°=1
tan60°=根號3
7樓:餘起雲欒卿
直角三角形的三邊分別為x,y,z,z為斜邊,則有sina=x/z,cosa=y/z,
所以,sina平方+cosa平方就等於z的平方分之x的平方+z的平方分之y的平方,在直角三角形中的勾股定理有x的平方+y的平方等於z的平方,所以等效代換得sina平方+cosa平方=1就這樣
8樓:流星韻筠
函式名 正弦 餘弦 正切 餘切 正割 餘割
在平面直角座標系xoy中,從點o引出一條射線op,設旋轉角為θ,設op=r,p點的座標為(x,y)有
正弦函式 sinθ=y/r
餘弦函式 cosθ=x/r
正切函式 tanθ=y/x
餘切函式 cotθ=x/y
正割函式 secθ=r/x
餘割函式 cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨於被淘汰的函式:
正矢函式 versinθ =1-cosθ
餘矢函式 coversθ =1-sinθ
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
同角三角函式間的基本關係式:
·平方關係:
sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
餘弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
·三角函式恆等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函式:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
三角函式的誘導公式
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈z)
初中數學三角函式,初中數學三角函式公式
像這種樹狀圖和列表法都是用來分析概率和平率的。比如有白紅藍球各5個。求每次摸3個,摸到2個白球的概率是多少。這種你就需要列表或畫樹狀圖來分析問題。樹狀圖你應該知道要怎麼畫吧。畫樹狀圖是最好解決的,這種中考經常考。但也都是我打比方的這個型別。如果還不懂的話,那可以再問我。 蘿偞 帰根 樹狀圖 第一行寫...
初中數學三角函式中考專題,初中數學三角函式講解
絕對值,相反數,科學計數法,三檢視,分式方程解法,一元二次方程解法,不等式解法,一次函式影象,因式分解,勾股定理,冪的運算,三角函式值,圖形的對稱 平移和旋轉,解直角三角形,一次函式與反比例函式結合,二次函式解析式與影象,二次. 三角函式專項訓練 1 2009眉山 海船以5海里 小時的速度向正東方向...
初中數學三角函式公式總共有哪些,初中三角函式公式表
老黃知識共享 都是些簡單的,主要有 tanx sinx cosx ctanx cosx sinx 而最重要的一條是 sinx 2 cosx 2 1 就適合 tan cot 1 sin csc 1 cos sec 1 商的關係 sin cos tan sec csc cos sin cot csc s...