初中數學三角函式,初中數學三角函式公式

時間 2021-08-30 09:25:06

1樓:

像這種樹狀圖和列表法都是用來分析概率和平率的。比如有白紅藍球各5個。求每次摸3個,摸到2個白球的概率是多少。

這種你就需要列表或畫樹狀圖來分析問題。樹狀圖你應該知道要怎麼畫吧。畫樹狀圖是最好解決的,這種中考經常考。

但也都是我打比方的這個型別。 如果還不懂的話,那可以再問我。

2樓:№蘿偞し帰根

樹狀圖:第一行寫 開始

第二行寫 第一次 第二次

第三行寫資料

(第四行寫資料)

…… 最後一行寫所有結論

列表法:在左上角寫第一次,第二次

橫排寫第一次的資料

豎列寫第2次的資料

(初中僅是簡單的2步題)

以上兩種最後都要寫:

p什麼=幾分之幾 分子寫出現頻數,分母寫總數很累哦~~給加個分吧!

3樓:後振英霍申

根據題意,這個等腰三角形的一個底角=(180-120)/2=30°,設三角形的腰長為x,則有:

底長=2*x*cos30°=√3x.

即:√3x+x+x=18,所以x=18(2-√3)面積=(1/2)*x*x*sin120°=(1/2)*18^2*(2-√3)^2*√3/2=81(7√3-6).

初中數學三角函式公式

4樓:人設不能崩無限

關於初中三角函式公式如:

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

cos30°=√3/2

cos45°=√2/2

cos60°=1/2

tan30°=√3/3

tan45°=1

tan60°=√3[1]

cot30°=√3

cot45°=1

cot60°=√3/3

5樓:匿名使用者

三角函式公式

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

sin30°=1/2

sin45°=根號2/2

sin60°=根號3/2

cos30°=根號3/2

cos45°=根號2/2

cos60°=1/2

tan30°=根號3/3

tan45°=1

tan60°=根號3

6樓:餘起雲欒卿

直角三角形的三邊分別為x,y,z,z為斜邊,則有sina=x/z,cosa=y/z,

所以,sina平方+cosa平方就等於z的平方分之x的平方+z的平方分之y的平方,在直角三角形中的勾股定理有x的平方+y的平方等於z的平方,所以等效代換得sina平方+cosa平方=1就這樣

7樓:匿名使用者

兩角和公式

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb

8樓:流星韻筠

函式名 正弦 餘弦 正切 餘切 正割 餘割

在平面直角座標系xoy中,從點o引出一條射線op,設旋轉角為θ,設op=r,p點的座標為(x,y)有

正弦函式 sinθ=y/r

餘弦函式 cosθ=x/r

正切函式 tanθ=y/x

餘切函式 cotθ=x/y

正割函式 secθ=r/x

餘割函式 cscθ=r/y

(斜邊為r,對邊為y,鄰邊為x。)

以及兩個不常用,已趨於被淘汰的函式:

正矢函式 versinθ =1-cosθ

餘矢函式 coversθ =1-sinθ

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

同角三角函式間的基本關係式:

·平方關係:

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·積的關係:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等於角a的對邊比斜邊,

餘弦等於角a的鄰邊比斜邊

正切等於對邊比鄰邊,

·三角函式恆等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函式:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

三角函式的誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

初中數學三角函式中考專題,初中數學三角函式講解

絕對值,相反數,科學計數法,三檢視,分式方程解法,一元二次方程解法,不等式解法,一次函式影象,因式分解,勾股定理,冪的運算,三角函式值,圖形的對稱 平移和旋轉,解直角三角形,一次函式與反比例函式結合,二次函式解析式與影象,二次. 三角函式專項訓練 1 2009眉山 海船以5海里 小時的速度向正東方向...

初三數學三角函式,初中數學三角函式公式

試題分析 1 由垂線段最短,可知過點m作mn ac於點n,則此點n即為所求。由題意可首先求得 amc是直角,然後根據含30 的直角三角形的性質,即可求得答案 答案 過點m作mn ac於點n,則點n即為所求.東邊為e,北邊為d,c座標線西邊為b eam 60 eac 30 cam 30 amn 60 ...

初中數學三角函式公式總共有哪些,初中三角函式公式表

老黃知識共享 都是些簡單的,主要有 tanx sinx cosx ctanx cosx sinx 而最重要的一條是 sinx 2 cosx 2 1 就適合 tan cot 1 sin csc 1 cos sec 1 商的關係 sin cos tan sec csc cos sin cot csc s...