有數,被3除餘2,被4除餘1,那麼這個數除以12餘

時間 2021-12-22 18:50:56

1樓:

答案是:5將這個數看成a+b,a為可以被12整除的部分,b則為除以12的餘數。

a可以被12整除,則也可以被3或4整除。

因為這個數“除以3餘2,除以4餘1”。

所以b也是“除以3餘2,除以4餘1”。

又因為b是大於等於1而小於等於11,在這個區間內,只有5是符合的。

整數的除法法則

1)從被除數的高位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;

2)除到被除數的哪一位,就在那一位上面寫上商;

3)每次除後餘下的數必須比除數小。

除數是整數的小數除法法則:

1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;

2)如果除到被除數的末尾仍有餘數,就在餘數後面補零,再繼續除。

2樓:昌昌無敵

餘數是5

假設這個數除以3商是m餘數是2,除以4商是n餘數是1,其中m、n都是自然數

那麼這個數a可以表示為: a=3m+2或者4n+13m+2=4n+1

3m-3=4n-4

3(m-1)=4(n-1)

因為m、n都是自然數,所以等式要成立,必須m-1是4的倍數,n-1是3的倍數

a=3m+2=3(m-1)+5

因為m-1是4的倍數,所以3(m-1)是12的倍數,那麼a=3(m-1)+5是12的倍數多5

所以這個數除以12餘數是5望採納

有一個數,被3除餘2,被4除餘1,那麼這個數除以12餘幾?(要詳解過程)

3樓:勤奮的黑痴

除以3餘2的數有:

2, 5, 8, 11,14, 17, 20,23….

它們除以12的餘數是:

2,5,8,11,2,5,8,11,….

除以4餘1的數有:

1, 5, 9, 13,

17, 21, 25, 29,….

它們除以12的餘數是:

1, 5, 9, 1, 5,

9,….

一個數除以12的餘數是唯一的.上面兩行餘數中,只有5是共同的,因此這個數除以12的餘數是5.

一個數被3除餘2,被4除餘3,被5除餘4,這個數最小是多少

4樓:匿名使用者

一個數被3除餘2,被4除餘3,被5除餘4,這個數最小是59。

這個數+1能被3,4,5整除 這個數+1=3*4*5=60 這個數最小是:60-1=59。

在一千多年前的《孫子算經》中,有這樣一道算術題: “今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何?”按照今天的話來說:

一個數除以3餘2,除以5餘3,除以7餘2,求這個數. 這樣的問題,也有人稱為“韓信點兵”.它形成了一類問題,也就是初等數論中解同餘式.

這類問題的有解條件和解的方法被稱為“中國剩餘定理”,這是由中國人首先提出的.

① 有一個數,除以3餘2,除以4餘1,問這個數除以12餘幾? 解:除以3餘2的數有:

2, 5, 8, 11,14, 17, 20, 23…. 它們除以12的餘數是: 2,5,8,11,2,5,8,11,….

除以4餘1的數有: 1, 5, 9, 13, 17, 21, 25, 29,…. 它們除以12的餘數是:

1, 5, 9, 1, 5, 9,…. 一個數除以12的餘數是唯一的.上面兩行餘數中,只有5是共同的,因此這個數除以12的餘數是5.

如果我們把①的問題改變一下,不求被12除的餘數,而是求這個數.很明顯,滿足條件的數是很多的,它是 5+12×整數, 整數可以取0,1,2,…,無窮無盡.事實上,我們首先找出5後,注意到12是3與4的最小公倍數,再加上12的整數倍,就都是滿足條件的數.

這樣就是把“除以3餘2,除以4餘1”兩個條件合併成“除以12餘5”一個條件.《孫子算經》提出的問題有三個條件,我們可以先把兩個條件合併成一個.然後再與第三個條件合併,就可找到答案.

②一個數除以3餘2,除以5餘3,除以7餘2,求符合條件的最小數. 解:先列出除以3餘2的數:

2, 5, 8, 11, 14, 17, 20, 23, 26,…, 再列出除以5餘3的數: 3, 8, 13, 18, 23, 28,…. 這兩列數中,首先出現的公共數是8.

3與5的最小公倍數是15.兩個條件合併成一個就是8+15×整數,列出這一串數是8, 23, 38,…,再列出除以7餘2的數 2, 9, 16, 23, 30,…, 就得出符合題目條件的最小數是23.

5樓:集長欒景山

這個數+1正好被3、4、5整除3、4、5的最小公倍數是60所以這個數最小是60-1=59

6樓:

3.4和5的最小公倍數是:3×4×5=60,所以這個自然數最小是:60-1=59.

故答案為:59.

這個數加上1後,能同時被3、4、5整除,

7樓:小貓阿虎

被3除餘2,被4除餘3,被5除餘4,即這個數加上1就能被3、4、5整除,3、4、5的最小公倍數是3×4×5=60,即這個數加上1就能被60整除,

500以內60最大倍數是480,這個數在500以內最大是480-1=479。

或被3除餘2,被4除餘3,被5除餘4,即這個數加上1就能被3、4、5整除,那麼這個數個位是0;這個數在500以內,即百位是4(500不能被3整除);能被3整除,則10位應是8,(4+8=12能被3整除);

這個數在500以內最大是480-1=479

一個數除以3餘2,除以5餘3,除以7餘2,這個數最小是多少?

8樓:匿名使用者

由題意可知,這個數加1,是3的倍數,也是5的倍數,即為3,5的公倍數

3,5的公倍數有:15,30,45,60,75,90,105,.....可以知道,這些都是15的倍數

則這個自然數可能是:15的倍數-1(設為15x-1)

而這個自然數加2是7的倍數,即(15x+1)是7的倍數

15x+1=14x+x+1 所以x最小為6

這個數最小為:15x-1=15*6-1=89

自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。

自然數有有序性,無限性。分為偶數和奇數,合數和質數等。

自然數是一切等價有限集合共同特徵的標記。

注:整數包括自然數,所以自然數一定是整數,且一定是非負整數。

但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不總是成立的。用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。

表示物體個數的數叫自然數,自然數一個接一個,組成一個無窮集體。自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。

自然數是人們認識的所有數中最基本的一類,為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論:自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。

9樓:繁人凡人

這個數是23.

利用除以5餘3的規律,說明個位上是3或8;

除以3餘2,除以7也餘2,說明除以21餘2。

最小為21+2=23。

10樓:匿名使用者

這個數除以

3和除以7都是餘2,那麼這個數可表示為: 3*7*n+2 = 21n+2 (其中n為自然數)

用21n+2除以5,得

(21n+2)÷5

= (20n+n+2)÷5

= 4n + (n+2)÷5

上式餘3,即 n+2=3 , n=1

這個數是 21n+2 = 21×1+2 = 23

11樓:支離破碎回憶

23,因為它說了除以3餘2和除以7餘2餘數相同說明這個數是3和7的倍數加上它們相同的餘數,而且還要符合除以5餘3的條件,這個數只有23符合所有條件。算式:3*7+2

12樓:鈄鬆區學海

告訴你一個解題歌謠:

三人同行七十稀,五樹梅花二十一,七子團圓整半月,減百零五便得知。

三人同行七十稀,把除以3所得的餘數乘以70;

五樹梅花二十一,把除以5所得的餘數乘以21;

七子團圓整半月,把除以7所得的餘數乘以15;

減百零五便得知,把上述三個積加起來,減去105的倍數,所得的差即為所求。

13樓:賽禹泰雯華

除以7餘27k+

2除以5餘37k+

2=5k+

3+(2k-

1)2k

-1被5整除,

k最小=3,7k+2最小=7*3+2=23數除以3餘1

35k+23=

(36k+21

+1)-(k

-1)k-

1被3整除,k最小

=1,35k

+23最小

=35*1+23

=58這個數最小是58

有一個數,除以3餘2,除以4餘1,則這個數除以12的餘數是多少?怎麼算

14樓:匿名使用者

你好!在(4k+1)-2=4k-1中找3的倍數,如k=1時這個數是5,除以12的餘數是5,k=4時這個數是17,除以12的餘數是5。經濟數學團隊幫你解答,請及時採納。謝謝!

15樓:心的彼岸

把這個數當成

復x,x÷3=?……2 x÷4=?……1 得知必制須是3的倍數bai

加du2,zhi4的倍數加1 11雖然dao是3的倍數加2但不是4的倍數加1,17是3的倍數加2,也是4的倍數加1 那麼17÷12=1……5

數被3除餘2,被5除餘3,被7除餘4,求適合條件的最小數。這題有何特點,做此題有何規律?請說明

劉孔範 設x 3a 2 5b 3 7c 4 a 5b 1 3 2b b 1 3,因為a是整數,則可設b 1 3n,n為正整數,則 b 3n 15 3n 1 3 7c 4 15n 4 7c c 2n n 4 7 設n 4 7m,m為正整數 則n 7m 4 b 3n 1 21m 11 x 5b 3 10...

數除以2餘1除3餘2除4餘3除5餘4除6餘

喵哥帶你玩 加上1 就能被 2,3,4,5,6整除,因此他們的最小公倍數 lcm 2,3,4,5,6 60 最小公倍數滿足可以被 2,3,4,5,6整除,而且最小公倍數的整數倍都滿足整除性質.設 這樣的數為60n 1,其中n是整數 同時 這個數能被7除盡 那麼 這個數還可以假設為 7m,m為整數,同...

整數除2餘1除3456都餘1但除7餘0求這個

除和除以是不同的,而且所求的整數有無數個。這兩點都是小學的知識。如果你想說的是除以,而且想問的是滿足題意的最小正整數,那麼 include void main 聽不清啊 include int main int i for i 1 i 7 i 60 printf 符合條件最小的整數是 d n i r...