已知agt0a的2次方2根號,已知a 0,a的2x次方 2根號

時間 2021-09-05 16:21:02

1樓:中人網校

關於未知數的n次冪方程,給出答案如下,僅供參考:

根據題意,a^2x=2根號2 +3

即有:a^2x=(1+根號2)^2

即有:a^x=1+根號2

由已知a>0,可得 a^x>0

所以:a^-x=根號2-1

原式=[(1+根號2)^6+(根號2-1)^6]/[1+根號2-(根號2-1)]=198/2=99

延伸定義

一般地,在數學上我們把n個相同的因數a相乘的積記做a^n。這種求幾個相同因數的積的運算叫做乘方,乘方的結果叫做冪。在a^n中,a叫做底數,n叫做指數。

a^n讀作「a的n次方」或「a的n次冪「。

運演算法則

乘法除法

由於看不清**上的內容,所以回答只能到這裡。

2樓:匿名使用者

a^2x=2根號2 +3,顯然 2根號2 +3=(1+根號2)^2所以a^x=1+根號2 (a^x>0,取正)a^-x=根號2-1

原式=[(1+根號2)^6+(根號2-1)^6]/[1+根號2-(根號2-1)]

=198/2=99

3樓:匿名使用者

我手機上的,所以看不到那**上有什內容。 我只能做到這裡: a的2x次方=[(根號2)+1]的平方 因為a>0,所以a的x次方=(根號2)+1。

不知道你要求什麼,所以只能做到這了。 關鍵是(2倍根號2)+3=(2倍根號2)+1+2=[(根號2)+1]的平方

已知a>0,a的2x次方等於2倍根號2加3的和,求(a的6x次方加a的負6x次方)/(a的x次方減a的負x次方)的值

4樓:匿名使用者

^a^bai(2x)=3+2根號

du2 a^(-2x)=3-2根號

zhidao2

a>0 =>a^內x=根號容(3+2根號2)=1+根號2 a^(-x)=根號2-1

a^(6x)=[a^(2x)]^3=(3+2根號2)^3=27+54根號2+72+16根號2=99+70根號2

a^(-6x)=[a^(-2x)]^3=(3-2根號2)^3=27-54根號2+72-16根號2=99-70根號2

上式=198/2=99

若a的2x次方=根號2-1,則(a的3x次方+a的負3x次方)/(a的x次方+a的負x次方)等於

5樓:

^a的2x次方=根號2-1,

則(a的3x次方+a的負3x次方)/(a的x次方+a的負x次方)等於[a^x+a^(-x)][a^(2x)-a^xa^(-x)+a^(-2x)]/(a^x+a^(-x))

=a^(2x)-a^xa^(-x)+a^(-2x)=√2-1-1+1/(√2-1)

=√2-1-1+√2+1

=2√2-1

已知a的2x次方=根號2+1,求(a的3次方+a的負3次方)/(a的x次方+a的負x次方)的值

6樓:糰子大家庭

^^^是(a^du+a^zhi)/(a^x+a^dao)吧。

(a^+a^)/(a^x+a^)=a^+a^-a^x*a^=(√回2+1)+(√2-1)-1=2√2-1

第一個等答

號是由於a^3+b^3=(a+b)(a^2+b^2-ab)

若函式f(x)=2的2x次方+2的x次方*a+a+1有零點,求實數a的取值範圍?

7樓:匿名使用者

設2^x=t

f(x)=t^2+at+a+1(t>0)

函式有零點 首先△>=0

a^2-4a-4>=0 得a>=2+2根號2 或者 a<=2- 2根號2

假如對稱軸在y軸左邊,就是-a/2<0 ,a>0,那麼t=0時,f(x)<=0 就是a+1<=0 a<=-1

假如在y軸右邊,a<0,那麼就有零點。

a的取值範圍為a<=2-2根號2

3 2根號2 的2019次方 3 2根號2 的

3 2 2 2011 3 2 2 2013 1 2 2 2011 1 2 2 2013 1 2 2 2011 1 2 2 2011 1 2 2 2 1 2 1 2 4022 1 2 2 2 1 4022 1 2 2 2 3 2 2 2 17 12 2 你我都是書友 3 2根號2 的2011次方 3 ...

已知a a分之1 1根號10求a的2次方a的2次

a 2 1 a 2 a 2 1 a2 2 2 a 1 a 2 2 1 根號10 2 2 1 10 2根號10 2 11 2根號10 2 9 2根號10因為 a 1 a 2 a 2 1 a 2 2 9 2根號10 2 7 2根號10 2 5 2根號10 根號2 2 2根號5根號2 根號5 2 根號2 ...

已知a 2 5)20195 2)根號5 根號2)0次方2)2,求a 2 4a的值

a 2 5 2014 5 2 2015 2 5 2 0 2 5 2 5 2 2014 5 2 2 1 2 5 4 2014 5 2 1 5 2 5 2 將a 5 2代入a 4a a 4a a 4a 4 4 a 2 4 5 2 2 4 5 4 5 4 1 望採納。謝謝 a 2 5 2014 5 2 2...