1樓:假面
無論什麼樣的函式,只要存在原函式,則原函式一定是可導函式,因此一定是連續的。分段函式的話就分段積分得到的原函式也是分段的。
原函式是指對於一個定義在某區間的已知函式f(x),如果存在可導函式f(x),使得在該區間內的任一點都存在df(x)=f(x)dx,則在該區間內就稱函式f(x)為函式f(x)的原函式。
若函式f(x)在某區間上連續,則f(x)在該區間內必存在原函式,這是一個充分而不必要條件,也稱為“原函式存在定理”。
函式族f(x)+c(c為任一個常數)中的任一個函式一定是f(x)的原函式,
故若函式f(x)有原函式,那麼其原函式為無窮多個。
2樓:
呃~首先這個問題,問得比較奇怪“有原函式的函式不一定連續”,條件是有原函式的函式,結論是該函式(有原函式的那個函式,即導函式)不一定連續,不夠嚴謹,概念模糊;然後第一次回答這樣推不正確,可導函式連續對的,第二句話“在定義域內連續”呃,必然的,最後一句話大錯了,小區間存在怎麼可以推出在大區間存在呢~教科書上反例很多;第二次問“只要有原函式的函式,在定義域內一定連續”,這個定義域是指原函式還是導函式的?
看到最後一次回答才明白你想問的,相當於問“原函式連續(在定義域內),其導函式不一定連續(在原函式的定義域內)”~而導函式不一定連續有兩種情況,(1)不一定處處可導,定義域為原函式真子集(2)處處可導但,但導函式有間斷點;用反證法很容易證出來,“原函式連續,其導函式一定連續”:(1)y=|x|連續,但其導函式在x=0處無定義域;(2)分段函式y=√(1-x^2)(-1≤x≤1),y=f(x) 其他,原函式連續但其導函式在x=1,-1上間斷。(1)和(2)任意一個例子都可以作為原命題的反例~從而可得“原函式連續(在定義域內),其導函式不一定連續(在原函式的定義域內)”。
為什麼連續函式一定有原函式,為什麼說連續函式一定有原函式
一般來說,連續函式必存在原函式,而存在原函式的函式不一定要求是連續函式。比如說存在第一類間斷點 可去間斷點 跳躍間斷點 的函式,原函式就是對函式進行一次積分,存在必然是無窮個,基本的可以看成是曲線與x軸圍成的面積函式。函式y f x 當自變數x的變化很小時,所引起的因變數y的變化也很小。例如,氣溫隨...
可導函式的導函式一定連續嗎,是連續不一定可導,可導一定連續嗎
你的這個問題過於籠統 既沒有說定義域,也沒有限制函式範圍!不過你的意思應該是 可導函式的導函式在原函式的可導定義域內一定連續嗎?答案是肯定的。一樓的回答肯定是錯誤的,因為x 0不在函式定義域內二樓同樣錯誤,斜率無窮大的點不存在,因為斜率垂直x軸的那個點就是他所說的斜率無窮大的點,這點明顯不可取即不在...
導函式原函式可積可導連續存在原函式相互之間的關係
可導與導函式 可導是對定義域內的點而言的 處處可導則存在導函式,此外還函式可以在某處可導 只要一個函式在定義域內某一點不可導,那麼就不存在導函式,即使該函式在其他各處均可導。可積與原函式 對於不定積分 同濟五版 上 給出的定義是 在區間i上,函式f x 的帶有任意常數項的原函式稱為f x 或f x ...