1樓:
arctan(x/a)的導數:a/(a^2+x^2)解答過程如下:
=1/(1+x^2/a^2)*(x/a)'
=a^2/(a^2+x^2)*(1/a)
=a/(a^2+x^2)
擴充套件資料1、導數的四則運算(u與v都是關於x的函式)(1)(u±v)'=u'±v'
(2)(u*v)'=u'*v+u*v'
(3)(u/v)'=(u'*v-u*v')/v²2、導數的基本公式
c'=0(c為常數)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx
3、求導例題
(1)y=4x^4+sinxcosx,則(y)'=(4x^4+sinxcosx)'
=(4x^4)'+(sinxcosx)'
=16x^3+(sinx)'*cosx+sinx*(cosx)'
=16x^3+cosx²x-sinx²x
=16x^3+cos2x
(2)y=x/(x+1),則(y)'=(x/(x+1))'
=(x'*(x+1)-x*(x+1)')/(x+1)²=((x+1)-x)/(x+1)²
=1/(x+1)²
2樓:匿名使用者
我先推導一下正切函式的求導公式,咳咳,因為忘了。我只記得複合函式求導法則和正餘弦導數。現在來推吧。
tan(x)'
='=cos(x)×[1/cos(x)]+sin(x)×[-1/cos^(2)(x)]×[-sin(x)]
=1+tan^(2)(x),
不要化簡成sec^(2)(x)了,那樣不好算。
繼續求題目所求。
tan(y)=x/a
tan(y)'=(x/a)'
[1+tan^(2)(y)]×y'=1/ay'=(1/a)/[1+(x/a)^2]
=a/[a^(2)+x^(2)]
3樓:心碎的殤已落
x/a關於x求導為1
arctan(x/a)=1/(1+(x/a)²)
4樓:匿名使用者
arctanx去掉1/a即可
arctanx的求導公式是什麼?
5樓:
解:令y=arctanx,則x=tany。
對x=tany這個方程「=」的兩邊同時對x求導,則(x)'=(tany)'
1=sec²y*(y)',則
(y)'=1/sec²y
又tany=x,則sec²y=1+tan²y=1+x²得,(y)'=1/(1+x²)
即arctanx的導數為1/(1+x²)。
擴充套件資料:1、導數的四則運算(u與v都是關於x的函式)(1)(u±v)'=u'±v'
(2)(u*v)'=u'*v+u*v'
(3)(u/v)'=(u'*v-u*v')/v²2、導數的基本公式
c'=0(c為常數)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx
3、求導例題
(1)y=4x^4+sinxcosx,則(y)'=(4x^4+sinxcosx)'
=(4x^4)'+(sinxcosx)'
=16x^3+(sinx)'*cosx+sinx*(cosx)'
=16x^3+cosx²x-sinx²x
=16x^3+cos2x
(2)y=x/(x+1),則(y)'=(x/(x+1))'
=(x'*(x+1)-x*(x+1)')/(x+1)²=((x+1)-x)/(x+1)²
=1/(x+1)²
6樓:angela韓雪倩
設x=tany
tany'=***^y
arctanx'=1/(tany)'=1/sec^ysec^y=1+tan^y=1+x^2
所以(arctanx)'=1/(1+x^2)對於雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的複合函式求導時通過查閱導數表和運用開頭的公式與 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能較快捷地求得結果。
7樓:蘭楠能平卉
想要了解這樣一個求導公式你需要先分別瞭解每一個你是怎麼做代表的特殊的意義在看
8樓:玖彧
反函式令arctanx=y那麼x=tany等式兩邊都對x求導,隱函式求導,那麼1=y'(tany)'=y'sec^2y
所以y'=1/sec^2y
由於tan^2+1=sec^2
所以y'=1/(1+tan^2y)
上面說了x=tany
所以y'=1/1+x^2
y arctanx的求導過程,arctanx的求導公式是什麼
席學岺滿辰 由反函式求導公式函式x y 的反函式y f x 的導數為1 y 故 arctanx 1 tany siny cosy 由導數的基本運算公式得 siny cosy 1 cos y 則 arctanx cos y cos y 1 cos y sin y cos y 1 1 x 希望能夠幫到您...
f(g(x))求導,函式y f(x) g(x)的求導公式
夢色十年 若h x f g x 則h x f g x g x 如設f x 3x,g x x 3,g f x 就是一個複合函式,並且g f x 3x 3 鏈式法則用文字描述,就是 由兩個函式湊起來的複合函式,其導數等於裡邊函式代入外邊函式的值之導數,乘以裡邊函式的導數。擴充套件資料 求導的方法 1 求...
複合函式求導公式的過程是怎麼推導的
秋天的期等待 正確 正式 的證明如下 假設我們要求f g x 對x的導數,且f g x 和g x 均可導。首先,根據定義 當h 0時,g x lim g x h g x h,所以,當h 0時,lim g x h g x h g x 0 設v g x h g x h g x 就有 g x h g x ...