1樓:
在數學乘法中負負得正的原因解釋有:
1、美國數學史家和數學教育家m·克萊因通過負債模型解決了「兩負數相乘得正」的問題:
一人每天欠債5元,給定日期(0元)3天后欠債15元。如果將5元的宅記作-5,那麼「每天欠債5元、欠債3天」可以用數學來表達:3×(-5)=-15。
同樣一人每天欠債5元,那麼給定日期(0元)3天前,他的財產比給定日期的財產多15元。如果我們用-3表示3天前,用-5表示每天欠債,那麼3天前他的經濟情況課表示為(-3)×(-5)=15。
2、相反數模型
5×3=5+5+5=15,(-5)×3=(-5)+(-5)+(-5)=-15,
所以,把一個因數換成他的相反數,所得的積就是原來的積的相反數,故(-5)×(-3)=15。
3、蘇聯著名數學家蓋爾範德(i.gelfand, 1913~2009)則作了另一種解釋:
3×5=15:得到5美元3次,即得到15美元;
3×(-5)=-15:付5美元罰金3次,即付罰金15美元;
(-3)×5=-15:沒有得到5美元3次,即沒有得到15美元;
(-3)×(-5)=+15:未付5美元罰金3次,即得到15美元。
2樓:匿名使用者
第一,根據相反數的定義,如果一個數與a的和為0,那麼這個數就叫做a的相反數,記作-a.
即-a+a=0
第二,對任何實數a,定義加法:0+a=a;乘法:1*a=a
第三,實數的加法和乘法滿足交換律,結合律以及分配律,等式還滿足"等量加等量,和相等;等量減等量,差相等"的規律
第四,兩個正數的積還是正數
第五,如果a>b,那麼a+c>b+c
上面5條是實數的公理,是不需要證明的.
因此有①0*a=(0+0)*a
=0*a+0*a(分配律)
等式兩邊同時加上-(0*a),得
0*a+[-(0*a)]=0*a+0*a+[-(0*a)]
根據相反數的定義以及加法結合律,得0=0*a+0=0*a,即任何數與0相乘,結果為0
②由於0*a=0
把等式左邊,得
(-1+1)*a=-1*a+1*a
=-1*a+a
=0而-a+a=0,於是有-1*a=-a,即任何數與-1相乘,結果為其相反數
於是,設-a和-b是兩個負數,則-a<0,
不等式兩邊加上a,得-a+a<0+a,即00
那麼(-a)*(-b)=(-1)*a*(-1)*b
=(-1)*(-1)*ab
由於(-1)*(-1)=-1的相反數=1,而1*ab=ab
故(-a)*(-b)=ab>0,即負負得正成立.
3樓:黎平城北未來城置業顧問
和你同學借錢一天借五塊借了三天你得到了多少
4樓:歡歡喜喜
「負負得正」的乘法法則是數學中的一種規定(定義),它不能通過邏輯證明得出的。.
5樓:人民委員
負是正的反面,負的反面是什麼?正面。對嗎?負負得正就是這個意思。
6樓:離人愁
因為0*任何數=0
1*任何數=1
1-1=0,可轉換為1+(-1)=0
則[1+(-1)]*(-1)=0*(-1)=0根據乘法交換律得1*(-1)+(-1)*(-1)=0。
設(-1)*(-1)為x,則由上式得(-1)+x=0解得x=1.
而x是由(-1)*(-1)設的,所以(-1)*(-1)=x=1所以一個負數×一個負數=一個正數
不用謝請叫我數學天才
數學乘法中為什麼負負得正? 5
7樓:匿名使用者
「負負得正」就相當於語文裡面的「雙重否定等於肯定」,這沒什麼為什麼,就是人為規定的,就好像1+1=2一樣,不用問為什麼。
8樓:day夜市
如:(-2)*(-9)=18
以我的角度可以想成:我若借了2元給你為-2,若我借你9個2元為:(-2)*9,我借你為負數。
則(-2)*(-9)為我借咯(-9)個2元給你,等於我借了(-18)元給你,我借錢給你等於我多了的錢為多咯就是正數,所以為正數。
9樓:匿名使用者
我也是初一的
其實可以這麼想:例一個正數1,加一個負號就等於他的相反數,就變成了負數:-1.在加一個負號,就是-1的相反數不就是整數了嗎?
如果你連某數的相反數也不理解,請結合數軸考慮。
祝你開心
10樓:匿名使用者
一個負數×一個正數是負的,比如5×(-6)表示不足0個5,就是小於0,(-5)×(-6)表示不足0個-5,就是大於0嘍
我也是初一的,發表下自己的小見解
為什麼數學有負負得正之說?
11樓:_一個人的幸福
內個```````````````
正負數和0共同組成了實數,用來區別人類所認識的同一類別中相反方向的事物的數量關係。將類似收入錢數定為正數,沒有錢為0,則支出錢數為負數。這收入和支出就是同一類別中相反方向的事物。
人們為了對於自己收入和支出有一個綜合起來的認識,就有了正數、負數與0之間的運算關係,收入支出相等時,正負數抵消為0,收大於支時,相抵消為正數,反之為負數。這種加減運算的關係和結果,由生活、生產中的實際事例中抽象出來,就成了實數中加減運算的法則。
對於乘法和除法,只是加法和減法的高一級的運動形式,對於同一個正數,如果每一次都是收入,一共收入了五次,這總數就是同樣的五個正數相加,其結果自然是正數,這乘法是加法的簡便運算方式,正數乘正數也是正數了。如果說每次支出數是一個負數,同樣的支出有五筆,加起來是負數,乘的結果也是負數,乘法也是加法的簡便運算,結果也一樣。如果說每次支出是一個負數,比如十元,記作負十。
支出了五次,就是負五十元了。現在我們說這個人每次支出了十元,支出了負一次,問一共支出了多少錢?很顯然,支出了負一次與正一次的方向不同,支出了正一次,結果是支出了十元,只能記作負十元。
這支出了負一次,也就是與支出的方向相反的一次,也就是收入了一次,收入了一次十元,結果就是正十元。因此也可以說,支出了負一次,結果自己收入了十元,支出了負二次,就是負二乘負十,也就是收入了兩次十元。這就是負負得正的實際事例和道理,將類似的數**動總結成規律,就是乘法中的負負得正。
12樓:濮陽瀅
簡單的說就是 -(-1)=1,這個就是負負得正的意思,在所有的負有理數前面加個負號就變成正有理數了。
13樓:匿名使用者
哪有那麼複雜呀,負負得正意思就是倆負數,乘一塊,結果就是正數,就這個意思,也可以理解為兩個負號疊加在一塊等效於一個正號
14樓:匿名使用者
我也是初一的
其實可以這麼想:例一個正數1,加一個負號就等於他的相反數,就變成了負數:-1.在加一個負號,就是-1的相反數不就是整數了嗎?
如果你連某數的相反數也不理解,請結合數軸考慮。
為什麼負負得正,為什麼數學有負負得正之說
妖魅少爺 1 乘法運算的法則 負負得正 只是一種規定,數的運演算法則本來是規定的,而不是推匯出來的。先規定運演算法則,然後研究運算律是否成立。2 怎樣規定運演算法則,不能是任意的,要看數系本身的性質。如為了反映客觀實際的某種數量關係,從而解決有關的實際問題。3 每個孩子都是聽著故事長大的。所以,他們...
趣味數學 為什麼負負得正,理工學科是什麼
眾所周知,負數概念最早出現在中國,在 九章算術 中方程章給出正負數的加減運演算法則,而負負得正直到13世紀末才由數學家朱士傑給出.在 算學啟蒙 1299 中,朱士傑提出 明乘除法,同名相乘得正,異名相乘得負 下面是引入方法幫助同學們理解.每個孩子都是聽著故事長大的.所以,他們應當對故事有著更多的興趣...
是什麼符號??在數學中, 在數學中是什麼意思
小雨 我好愛你 次方的意思比如2的平方 2 2 你好 是平方的意思 nice夜夏 我也不大清楚 反正後面是幾 就 是多少次方 在數學中是什麼意思 小小芝麻大大夢 在數學中有三層意思 1 表示次方。在電腦上輸入數學公式時,因為不便於輸入乘方,該符號經常被用來表示次方。例如2的5次方通常被表示為2 5。...