簡單的數學問題

時間 2021-08-30 11:16:25

1樓:吳就額

設a=(x,y),b=(x',y')。

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

ab+bc=ac。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0

ab-ac=cb. 即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

注:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)•b=λ(a•b)=(a•λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。

3、向量的的數量積

定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π

定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。

向量的數量積的座標表示:a•b=x•x'+y•y'。

向量的數量積的運算律

a•b=b•a(交換律);

(λa)•b=λ(a•b)(關於數乘法的結合律);

(a+b)•c=a•c+b•c(分配律);

向量的數量積的性質

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的數量積與實數運算的主要不同點

1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

4、向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:

∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

向量的向量積性質:

∣a×b∣是以a和b為邊的平行四邊形面積。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量積運算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量沒有除法,「向量ab/向量cd」是沒有意義的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 當且僅當a、b反向時,左邊取等號;

② 當且僅當a、b同向時,右邊取等號。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 當且僅當a、b同向時,左邊取等號;

② 當且僅當a、b反向時,右邊取等號。

定比分點

定比分點公式(向量p1p=λ•向量pp2)

設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在一個實數 λ,使 向量p1p=λ•向量pp2,λ叫做點p分有向線段p1p2所成的比。

若p1(x1,y1),p2(x2,y2),p(x,y),則有

op=(op1+λop2)(1+λ);(定比分點向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分點座標公式)

我們把上面的式子叫做有向線段p1p2的定比分點公式

三點共線定理

若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線

三角形重心判斷式

在△abc中,若ga +gb +gc=o,則g為△abc的重心

[編輯本段]向量共線的重要條件

若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。

a//b的重要條件是 xy'-x'y=0。

零向量0平行於任何向量。

[編輯本段]向量垂直的充要條件

a⊥b的充要條件是 a•b=0。

a⊥b的充要條件是 xx'+yy'=0。

零向量0垂直於任何向量. 不知你要的是不是這些?

不知道可不可以解你的問題

2樓:匿名使用者

畫條線斷,左端寫a右端寫c在中間隨便取一點b,你再看看,應該會懂得

3樓:匿名使用者

-ab等價於+ba,

所以總體等價於ba+ac,所以等於bc

另,數學背口訣之類的是下下策,理解、推導才是上策

數學問題

4樓:m我們的人的人

能放進儲藏室。

設abcd是矩形,則ab∥cd,ab=cd=1m,oa=1.2m,作oe⊥ab,則oe平分ab。

∴ae=1m

∴oe²=oa²-ae²=1.2²-0.5²=1.19,∵0.8²=0.64。1.19>0.64

∴長,寬,高分別是1.2m,1m,0.8m的箱子能放進儲藏室。

簡單!!數學問題,簡單的數學問題!!!

分解因式 a a b a b a a b 2 a a 2 b 2 a a 2 2ab b 2 a a 2 b 2 a 2 2ab b 2 a 2b 2 2ab 2ab b a 2化簡多項式 1 x x 1 x x 1 x 2 x 1 x 3 x 1 x 2006 1 x 1 x x 1 x 2 x ...

簡單數學問題,簡單的數學問題

函式定義域易見為 0 0,且f x 為奇函式。先討論當x 0的情況 由均值不等式f x x 1 x 2 x 1 x 2,等號成立當且僅當x 1 x,即x 1時成立。所以x 1時函式取極小值2.另外,當x 0時無極大值,取x很大,f x x 1 x無限增大 所以當x 0時f x 在x 1處取極小值2,...

簡單的數學問題,簡單數學問題

已知三角形的三邊長求三角形的面積可以用海倫 秦九韶公式 s p p a p b p c 其中a,b,c為三角形的三邊長,p a b c 2.顯然利用海倫 秦九韶公式可求得s abc 84cm 2.又s abc 21 h 2,所以h 8cm.解,在21cm邊上做高,設這條變的一邊為x,另一邊為 21 ...