三角形sin cos tan之間的關係

時間 2021-08-30 11:16:25

1樓:樂天

sin的平方+con的平方=1

tan=sin/con

2樓:隨風仍飄揚

誘導公式的本質

所謂三角函式誘導公式,就是將角n·(π/2)±α的三角函式轉化為角α的三角函式。

編輯本段常用的誘導公式

公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:   sin(2kπ+α)=sinα k∈z   cos(2kπ+α)=cosα k∈z   tan(2kπ+α)=tanα k∈z   cot(2kπ+α)=cotα k∈z   公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:   sin(π+α)=-sinα k∈z   cos(π+α)=-cosα k∈z   tan(π+α)=tanα k∈z   cot(π+α)=cotα k∈z   公式三: 任意角α與 -α的三角函式值之間的關係:

  sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六: π/2±α與α的三角函式值之間的關係:

  sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   誘導公式記憶口訣:「奇變偶不變,符號看象限」。    「奇、偶」指的是π/2的倍數的奇偶,「變與不變」指的是三角函式的名稱的變化:

「變」是指正弦變餘弦,正切變餘切。(反之亦然成立)「符號看象限」的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

    符號判斷口訣:   「一全正;二正弦;三兩切;四餘弦」。這十二字口訣的意思就是說:

第一象限內任何一個角的四種三角函式值都是「+」; 第二象限內只有正弦是「+」,其餘全部是「-」; 第三象限內只有正切和餘切是「+」,其餘全部是「-」; 第四象限內只有餘弦是「+」,其餘全部是「-」。   「asct」反z。意即為「all(全部)」、「sin」、「cos」、「tan」按照將字母z反過來寫所佔的象限對應的三角函式為正值。

編輯本段其他三角函式知識

同角三角函式的基本關係式

倒數關係    tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1   商的關係   sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方關係   sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α)

同角三角函式關係六角形記憶法

構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。   倒數關係   對角線上兩個函式互為倒數;   商數關係   六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。(主要是兩條虛線兩端的三角函式值的乘積)。

由此,可得商數關係式。   平方關係   在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

兩角和差公式

sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ-cosαsinβ   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

二倍角的正弦、餘弦和正切公式

sin2α=2sinαcosα   cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)   tan2α=2tanα/(1-tan^2(α))

半形的正弦、餘弦和正切公式

sin^2(α/2)=(1-cosα)/2   cos^2(α/2)=(1+cosα)/2   tan^2(α/2)=(1-cosα)/(1+cosα)   tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

萬能公式

sinα=2tan(α/2)/(1+tan^2(α/2))   cosα=(1-tan^2(α/2))/(1+tan^2(α/2))   tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)    cos3α=4cos^3(α)-3cosα    tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

三角函式的和差化積公式

sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)   sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)   cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)   cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)

三角函式的積化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]   cosα·sinβ=0.5[sin(α+β)-sin(α-β)]   cosα·cosβ=0.

5[cos(α+β)+cos(α-β)]   sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]

編輯本段公式推導過程

萬能公式推導   sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,   (因為cos^2(α)+sin^2(α)=1)   再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))   然後用α/2代替α即可。   同理可推導餘弦的萬能公式。

正切的萬能公式可通過正弦比餘弦得到。   三倍角公式推導   tan3α=sin3α/cos3α   =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)   =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)   上下同除以cos^3(α),得:   tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))   sin3α=sin(2α+α)=sin2αcosα+cos2αsinα   =2sinαcos^2(α)+(1-2sin^2(α))sinα   =2sinα-2sin^3(α)+sinα-2sin^3(α)   =3sinα-4sin^3(α)   cos3α=cos(2α+α)=cos2αcosα-sin2αsinα   =(2cos^2(α)-1)cosα-2cosαsin^2(α)   =2cos^3(α)-cosα+(2cosα-2cos^3(α))   =4cos^3(α)-3cosα   即   sin3α=3sinα-4sin^3(α)   cos3α=4cos^3(α)-3cosα   和差化積公式推導   首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb   我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb   所以,sina*cosb=(sin(a+b)+sin(a-b))/2   同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2   同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb   所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb   所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2   同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2   這樣,我們就得到了積化和差的四個公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2   cosa*sinb=(sin(a+b)-sin(a-b))/2   cosa*cosb=(cos(a+b)+cos(a-b))/2   sina*sinb=-(cos(a+b)-cos(a-b))/2   好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.   我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2   把a,b分別用x,y表示就可以得到和差化積的四個公式:   sinx+siny=2sin((x+y)/2)*cos((x-y)/2)   sinx-siny=2cos((x+y)/2)*sin((x-y)/2)   cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)   cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

三角形的定義,三角形的定義是什麼

由不在同一直線上的三條線段首尾順次連線所組成的封閉圖形叫作三角形。平面上三條直線或球面上三條弧線所圍成的圖形,三條直線所圍成的圖形叫平面三角形 三條弧線所圍成的圖形叫球面三角形,也叫三邊形。由三條線段首尾順次相連,得到的封閉幾何圖形叫作三角形。三角形是幾何圖案的基本圖形。三角形的分類 按角分判定法一...

三角形的周長之和,三角形的周長之和

樓主的問題寫得不清楚。到底是一個周長為1的三角形,還是一個邊長為1的正三角形?還有,樓主的意思到底是 1 第一次去掉三邊中點連線圍成的三角形 第二次去掉的是第一次去掉的那個三角形三邊中點連線圍成的三角形 第三次去掉的是第二次去掉的那個三角形三邊中點連線圍成的三角形 第四次去掉的是第三次去掉的那個三角...

在三角形中,tan A B 2 a ba b ,三角形的形狀

仁新 等腰三角形或直角三角形 證明 a b a b sina sinb sina sinb 2cos a b 2 sin a b 2 2sin a b 2 cos a b 2 tan a b 2 tan a b 2 tan a b 2 tan a b 2 tan a b 2 所以 tan a b 2...