1樓:匿名使用者
1、原點o的座標是 (0,0) ,
x軸上的點的座標的特點是 該點的縱座標值是零 ,
y軸上的點的座標的特點是 該點的橫座標值是零 ;
點m(a,0)在 x 軸上。
2、點a(﹣1,2)關於y軸的對稱點座標是 (1,2) ;
點a關於原點的對稱點的座標是(1,-2) 。
點a關於x軸對稱的點的座標為 (-1.-2)
3、已知點m與點n關於x軸對稱,則點m與點n橫座標相等,縱座標互為相反數。
4、已知點p與點q關於y軸對稱,則點p與點q縱座標相等,橫座標互為相反數。
5、點p到x軸的距離是2,到y軸的距離是3,則p點的座標是(3.2)或(-3,2)或(3,-2)或(-3,-2) 。
6、線段cd是由線段ab平移得到的。點a(–1,4)的對應點為c(4,7),則點b(–4,–1)的對應點d的座標為(1,2)。
7、在平面直角座標系內,把點p(-5,-2)先向左平移2個單位長度,再向上平移4個單位長度後得到的點的座標是 (-7,2) 。
8、將點p(-3,y)向下平移3個單位,向左平移2個單位後得到點q(x,-1),則xy=-10 。
9、已知ab∥x軸,a點的座標為(3,2),並且ab=5,則b的座標為 (8,2)
或(-2,2) 。
10、a(– 3,– 2)、b(2,– 2)、c(– 2,1)、d(3,1)是座標平面內的四個點,則線段ab與cd的關係是平行且相等。
11、在平面直角座標系內,有一條直線pq平行於y軸,已知直線pq上有兩個點,座標分別為(-a,-2)和(3,6),則 a=-3 。
12 、點a在x軸上,位於原點左側,距離座標原點7個單位長度,則此點的座標為 (-7,0) ;
13、在y軸上且到點a(0,-3)的線段長度是4的點b的座標為(0,1)或(0,-7)。
14、在座標系內,點p(2,-2)和點q(2,4)之間的距離等於 6 個單位長度。線段pq的中點的座標是(2,1)。
15、已知p點座標為(2-a,3a+6),且點p到兩座標軸的距離相等,則點p的座標(3,3)或(6,-6)。
16、已知點a(-3+a,2a+9)在第二象限的角平分線上,則a的值是-2。
17、已知點p(x,-y)在第
一、三象限的角平分線上,由x與y的關係是|x|=|y|。
18、若點b(a,b)在第三象限,則點c(-a+1,3b-5) 在第四象限。
19、如果點m(x+3,2x-4)在第四象限內,那麼x的取值範圍是-3 20、已知點p在第二象限,且橫座標與縱座標的和為1,試寫出一個符合條件的點p (-1,2) 。點k在第三象限,且橫座標與縱座標的積為8,寫出兩個符合條件的點(-1,-8),(-2,-4) 。 21、已知點a(a,0)和點b(0,5)兩點,且直線ab與座標軸圍成的三角形的面積等於10,則a的值是4,或-4。 22、已知,則點(,)在 。 2樓: 1.原點座標(0,0);x軸座標(x,0);y軸座標(0,y);點m在x軸上。 2.點a(﹣1,2)關於x軸對稱點(﹣1,﹣2),關於y軸對稱點(1,2);關於原點對稱(1,﹣2) 3.題意不清 4.題意不清 5.p點座標(2,3);(﹣2,3);(﹣2,﹣3);(2,﹣3) 6.由a到c,可以看出線段向右平移5個單位,向上平移3個單位,所以點d座標(1,2) 7.(﹣7,2) 8.由題意知﹣3-2=x;y-3=﹣1,推出x=﹣5,y=2,所以xy=﹣10。 9.(﹣2,2)或(8,2) 10.平行且相等 11.a=﹣3 12.(﹣7,0) 13.(0,﹣7)或(0,1) 14.6個;(2,1) 15.因為點p到兩座標軸的距離相等,則丨2-a丨=丨3a+6丨,解得a=﹣1或a=﹣4,所以點p座標(3,3)或(6,﹣6) 16.因為在第二象限角平分線上,則(﹣3+a)+(2a+9)=0,解得a=﹣2 17.丨x丨=丨y丨 18.由題知a<0,b<0,那麼﹣a+1>0,3b-5<0,所以c點在第四象限。 19.x+3>0且2x-4<0,推出﹣3<x<2 20.(﹣1,2);(﹣1,﹣8),(﹣2,﹣4) 21.a=2或a=﹣2 七年級數學題 3樓:我是正確 小明家離火車站很近,他每天都可以根據車站大樓的鐘聲起床。車站大樓的鐘,每敲響一下延時3 秒,間隔1 秒後再敲第二下。假如從第一下鐘聲響起,小明就醒了,那麼到小明確切判斷出已是清晨6 點,前後共經過了幾秒鐘? 1. 從甲地到乙地有2種走法,從乙地到丙地有4種走法,從甲地不經過乙地到丙地有3種走法,則從甲地到丙地的不同的走法共有 種. 2. 甲、乙、丙3個班各有三好學生3,5,2名,現準備推選兩名來自不同班的三好學生去參加校三好學生代表大會,共有 種不同的推選方法. 3. 從甲、乙、丙三名同學中選出兩名參加某天的一項活動,其中一名同學參加上午的活動,一名同學參加下午的活動.有 種不同的選法. 4. 從a、b、c、d這4個字母中,每次取出3個按順序排成一列,共有 種不同的排法. 5. 若從6名志願者中選出4人分別從事翻譯、導遊、導購、保潔四項不同的工作,則選派的方案有 種. 6. 有a,b,c,d,e共5個火車站,都有往返車,問車站間共需要準備 種火車票. 7. 某年全國足球甲級聯賽有14個隊參加,每隊都要與其餘各隊在主、客場分別比賽一場,共進行 場比賽. 8. 由數字1、2、3、4、5、6可以組成 個沒有重複數字的正整數. 9. 用0到9這10個數字可以組成 個沒有重複數字的三位數. 10. (1)有5本不同的書,從中選出3本送給3位同學每人1本,共有 種不同的選法; (2)有5種不同的書,要買3本送給3名同學每人1本,共有 種不同的選法. 11. 計劃展出10幅不同的畫,其中1幅水彩畫、4幅油畫、5幅國畫,排成一行陳列,要求同一品種的畫必須連在一起,那麼不同的陳列方式有 種. 12. (1)將18個人排成一排,不同的排法有 少種; (2)將18個人排成兩排,每排9人,不同的排法有 種; (3)將18個人排成三排,每排6人,不同的排法有 種. 13. 5人站成一排,(1)其中甲、乙兩人必須相鄰,有 種不同的排法; (2)其中甲、乙兩人不能相鄰,有 種不同的排法; (3)其中甲不站排頭、乙不站排尾,有 種不同的排法. 14. 5名學生和1名老師照相,老師不能站排頭,也不能站排尾,共有 種不同的站法. 15. 4名學生和3名老師排成一排照相,老師不能排兩端,且老師必須要排在一起的不同排法有 種. 16. 停車場有7個停車位,現在有4輛車要停放,若要使3個空位連在一起,則停放的方法有 種. 17. 在7名運動員中選出4名組成接力隊參加4×100米比賽,那麼甲、乙都不跑中間兩棒的安排方法有 種. 18. 一個口袋內裝有大小相同的7個白球和1個黑球.(1)從口袋內取出3個球,共有 種取法; (2)從口袋內取出3個球,使其中含有1個黑球,有 種取法; (3)從口袋內取出3個球,使其中不含黑球,有 種取法. 19. 甲,乙,丙,丁4個足球隊舉行單迴圈賽: (1)共需比賽 場; (2)冠亞軍共有 種可能. 20. 按下列條件,從12人中選出5人,有 種不同選法. (1)甲、乙、丙三人必須當選; (2)甲、乙、丙三人不能當選; (3)甲必須當選,乙、丙不能當選; (4)甲、乙、丙三人只有一人當選; (5)甲、乙、丙三人至多2人當選; (6)甲、乙、丙三人至少1人當選; 21. 某歌舞團有7名演員,其中3名會唱歌,2名會跳舞,2名既會唱歌又會跳舞,現在要從7名演員中選出2人,一人唱歌,一人跳舞,到農村演出,問有 種選法. 22. 從6名男生和4名女生中,選出3名男生和2名女生分別承擔a,b,c,d,e五項工作,一共有 種不同的分配方法. 一、選擇題(本題共10小題,每小題4分,滿分40分) 1、下列運算正確的是( ) a. 4 =±2 b.2-3=-6 c.x2•x3=x6 d.(-2x)4=16x4 2、隨著中國綜合國力的提升,近年來全球學習漢語的人數不斷增加.據報道,2023年海外學習漢語的學生人數已達38 200 000人,用科學記數法表示為( )人(保留3個有效數字) a.0.382×10 b.3.82×10 c.38.2×10 d.382×10 4、 在元旦遊園晚會上有一個闖關活動:將5張分別畫有等腰梯形、平行四邊形、等腰三角形、圓、菱形的卡片任意擺放,將有圖形的一面朝下,從中任意翻開一張,如果翻開的圖形是軸對稱圖形,就可以過關,那麼一次過關的概率是 ( ) a. b. c. d. 6、 甲、乙、丙三名同學參加風箏比賽,三人放出風箏線長、線與地面夾角如下表(假設風箏線是拉直的,三位同學身高忽略不計),則三人所放的風箏中 ( ) 同學 甲 乙 丙 放出風箏線長 100m i00m 90m 線與地面夾角 40° 45° 60° a .甲的最高 b .丙的最高 c .乙的最低 d .丙的最低 7、國家為九年義務教育期間的學生實行「兩免一補」政策,下表是我市 某中學國家免費提供教科書補助的部分情況. 七 八 九 合計 每人免費補助金額(元) 110 90 50 人數(人) 80 300 免費補助總金額(元) 4000 26200 如果要知道空白處的資料,可設七年級的人數為x,八年級的人數為y, 根據題意列出方程組為( ) a. b . c. d . 8、 有六個等圓按甲、乙、丙三種形式擺放,使相鄰兩圓相互外切,且 如圖所示的連心線分別構成正六邊形,平行四邊形和正三角形,將圓心 連線外側的六個扇形(陰影部分)的面積之和依次記為s、p、q則( ) 14、2023年1月1日起,某市全面推行農村合作醫療,農民每年每人只拿 出10元就可以享受合作醫療,住院費報銷辦法如下表: 住院費(元) 報銷率(%) 不超過3000元的部分 15 3000——4000的部分 25 4000——5000的部分 30 5000——10000的部分 35 10000——20000的部分 40 超過20000的部分 45 某人住院費報銷了880元,則住院費為__________元. 1、點b在y軸上,位於原點上方,距離座標原點4單位長度,則此點的座標為 ; 6、一個正數x的平方根是2a 3與5 a,則a是_________. 7、若x+2y+3z=10,4x+3y+2z=15,則x+y+z的值是_____________. 8、如果25x2=36,那麼x的值是______________. 9、已知ad是 abc的邊bc上的中線,ab=15cm,ac=10cm,則 abd的周長比 abd的周長大__________. 10、如果三角形的一個外角等於與它相鄰的內角的2倍,等於與它不相鄰的一個內角的4倍,則此三角形各內角的度數是_______________. 11、已知一個多邊形的內角和與外角和共2160°,則這個多邊形的邊數是___________. 12、將點a先向下平移3個單位,再向右平移2個單位後,則得到點b( 2,5),則點a的座標為 . 3、在平面直角座標系中,標出下列個點: 點a在y軸上,位於原點上方,距離原點2個單位長度; 點b在x軸上,位於原點右側,距離原點1個單位長度; 點c在x軸上,y軸右側,距離每條兩條座標軸都是2個單位長度; 點d在x軸上,位於原點右側,距離原點3個單位長度; 點e在x軸上方,y軸右側,距離x軸2個單位長度,距離y軸4個單位長度。 依次連線這些點,你覺得它像什麼圖形?(8分) 5、計算正五邊形和正十邊形的每一個內角度數。(5分) 6、一個多邊形的內角和等於1260 ,它是幾邊形?(5分) 8、按要求解答下列方程(共8分) (1) x+2y=9 (2) 2x-y=5 3x-2y=-1 3x+4y=2 三、二元一次方程組應用(每題7分,共35分) 1、根據市場調查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產品的銷售數量之比(按瓶計算)為2:5,某廠每天生產這種消毒液22.5噸,這些消毒液應該分裝大、小瓶裝個兩種各有多少瓶? 2、2臺大收割機5臺小收割機工作2小時收割小麥3。6公頃,3臺大收割機和2抬小收割機5小時收割小麥8公頃,一臺大收割機和一臺小收割機1小時各收割小麥多少公頃? 3、a市到b市的航線長1200km,一架飛機從a市順風飛往b市需要2小時30分,從b市逆風飛往a市需要3小時20分,求飛機的平均速度和風速。 4、用白鐵皮做罐頭盒,每張鐵皮可製作盒身25個,或40個盒底,一個盒身與兩個盒底配成一套盒。現有36張白鐵皮,用多少張製作盒身,多少張製作盒底可以使盒身與盒底正好配套? 可以上中學數學網,先註冊然後搜尋相關試題即可,找到後望採納為最佳答案,謝謝 七年級數學題 求七年級數學題 五 學校將若干間宿舍分配給七年級一班的女生住宿,已知該班女生少於35人,若每個房間住5人,則剩下5人沒處可住 若每個房間住8人,則空出一間房,並且還有一間房也不滿。有多少間宿舍,多少名女生?解 ... 由題,化簡為3 a 2 b 2 c 2 a 2 b 2 c 2 2ab 2ac 2bc 即a 2 b 2 c 2 ab ac bc 如果a 0,則只能b c 0.如果 a不為0,a a b b b c c c a 0所以,a b c 3 a b c a b c 3a 3b 3c a b c 2ab ... 1.1 其實就是2又2分之1與3又3分之1,就是5 2與10 3,同分,15 6與20 6,所以3又3分之1大.2 4 和 4 都等於4 3 5分之4和 3分之2,先比5分之4和3分之2,4 5 1 1 5,2 3 1 1 3,由於1 5 1 3,所以4 5 2 3,負的就反過來,4 5 2 3 2...哪有七年級數學題,七年級數學題
七年級數學題
七年級數學題