1樓:匿名使用者
、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式型別的題目。3、十字相乘法比較難學。
5、十字相乘法解題例項:
1)、 用十字相乘法解一些簡單常見的題目
例1把m�0�5+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m�0�5+4m-12=(m-2)(m+6)
例2把5x�0�5+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x�0�5+6x-8=(x+2)(5x-4)
例3解方程x�0�5-8x+15=0
分析:把x�0�5-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x�0�5-5x-25=0
分析:把6x�0�5-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x�0�5-67xy+18y�0�5分解因式
分析:把14x�0�5-67xy+18y�0�5看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y�0�5可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x�0�5-67xy+18y�0�5= (2x-9y)(7x-2y)
例6 把10x�0�5-27xy-28y�0�5-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x�0�5-27xy-28y�0�5-x+25y-3
=10x�0�5-(27y+1)x -(28y�0�5-25y+3) 4y -3
7y ╳ -1
=10x�0�5-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y�0�5-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x�0�5-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
解法二、10x�0�5-27xy-28y�0�5-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
說明:在本題中先把10x�0�5-27xy-28y�0�5用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].
例7:解關於x方程:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
分析:2a�0�5–ab-b�0�5可以用十字相乘法進行因式分解
解:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
x�0�5- 3ax +(2a�0�5–ab - b�0�5)=0
x�0�5- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
兩種相關聯的變數之間的二次函式的關係,可以用三種不同形式的解析式表示:一般式、頂點式、交點式
交點式.
利用配方法,把二次函式的一般式變形為
y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]
應用平方差公式對右端進行因式分解,得
y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]
=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]
因一元二次方程ax^2+bx+c=0的兩根分別為x1,2=(-b±√b^2-4ac)/2a
所以上式可寫成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的兩個根
因x1,x2恰為此函式圖象與x軸兩交點(x1,0),(x2,0)的橫座標,故我們把函式y=a(x-x1)(x-x2)叫做函式的交點式.
在解決與二次函式的圖象和x軸交點座標有關的問題時,使用交點式較為方便.
二次函式的交點式還可利用下列變形方法求得:
設方程ax^2+bx+c=0的兩根分別為x1,x2
根據根與係數的關係x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),a/c=x1x2
∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]
=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2
2樓:匿名使用者
因為,電腦裡面沒有平方符號,所以首先我們來定下符號——這個符號代表二次方「^」。
就「x^-5x+4=0」這個式子來說明
首先我們可以把「x^」和「4」撤開,「x^」可以拆成兩個「x」,而「4」可以拆成「-4」和「-1」。第一,先看分解圖:
1) x -4
.\ x -1
2) x -4
./ x -1
3) x─ -4
x─ -1 (抱歉,那個"."是為了讓/與它應該在的地方對齊的.)
第二,下面是關於三個圖的講解:
步驟一: 「1)」中的「x」與「-4」相乘。
步驟二: 「2)」中的「x」與「-1」相乘。
步驟三: 「3)」中,將「x─ -4」與「x─ -1」寫在同一個括號裡寫成(x-4)(x-1)。
第三,是用十字相乘法的總步驟:
1.先將二次式(也就是二次未知數)分解為兩個一次式,兩個一次式的乘積要等於原二次式。即上面的「x」「x」的乘積為「x」。
2.再將常數項分解為兩個常數項,兩個常數項的乘積要等於原常數項。即上面的「-4」「-1」的乘積為「4」。
3.交叉相乘,就是上圖的「1)」「2)」。而交叉相乘出來的兩個數「-x」和「-4x」,相加等於一次式,即(-x)+(-4x)=-5x。
4.只要上面三個條件都成立,就可以進行下一個步驟。橫過來看,如「3)」的指向,將「x─ -4」與「x─ -1」寫在同一個括號裡寫成(x-4)(x-1)。
將等號加上,寫成(x-4)(x-1)=0,即可。
最後是注意條件:
1>注意正負號。
2>原式等號後一定要等於0。即式子的形式是「ax^+bx+c=0」(式子中的a,b,c是常數)
3>當式子為「ax^+bx+c=d」時(a,b,c,d均為常數),要將「d」移到等號左邊,也就是講,一定要想辦法讓等號右邊為「0」。
我希望我的回答可以讓你滿意,而十字相乘法是要經常使用才可以記牢的,才可以靈活運用的,不是可以死記硬背下來的東西,所以,希望你多多努力!
3樓:匿名使用者
把二次項和常數項都拆成兩個整數相乘。比如3x平方+12x+8 3拆成1*3 8拆成2*4,·然後1*2=4, 3*4=12····這個式子可以配成(x+2)(3x+4)
4樓:匿名使用者
交叉相乘 上下相乘 資料沒錯 就ok
怎麼用十字相乘法。十字相乘法口訣是什麼
5樓:小小芝麻大大夢
1、十字相乘法的方法口訣:
十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:
(1)用十字相乘法來分解因式。
(2)用十字相乘法來解一元二次方程。
十字相乘法的優點:
用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
十字相乘法的缺陷:
1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。
2、十字相乘法只適用於二次三項式型別的題目。
3、十字相乘法比較難學。
擴充套件資料
十字分解法能用於二次三項式(一元二次式)的分解因式(不一定是整數範圍內)。對於像ax²+bx+c=(a1x+c1)(a2x+c2)這樣的整式來說,這個方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積,把常數項c分解成兩個因數c1,c2的積,並使a1c2+a2c1正好等於一次項的係數b。
那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。
當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
6樓:吳敏和
十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
十字相乘法能把二次三項式分解因式(不一定在整數範圍內)。對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好等於一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:
x²+(p+q)x+pq=(x+p)(x+q)。
相乘法怎麼用,十字相乘法怎麼用???
十字相乘法能把某些二次三項式ax 2 bx c a 0 分解因式。這種方法的關健是把二次項的係數a分解成兩個因數a1,a2的積a1 a2,把常數項c分解成兩個因數c1,c2的積c1 c2,並使a1c2 a2c1正好是一次項係數b,那麼可以直接寫成結果 ax 2 bx c a1x c1 a2x c2 ...
用相乘法分解因式,用十字相乘法分解因式
又是你,這麼多沒有分,我不做。我不要15分鐘可以搞定 1 a 3 24a 2b 44ab 2 a a 2 24ab 44b 2 a a 22b a 2b 2 6x 2 23xy 20y 2 2x 5y 3x 4y 3 a 6 9a 3 8 a 3 8 a 3 1 a 2 a 2 4a 4 a 1 a...
相乘法公式,十字相乘法公式!
瞬翼流 要有耐心哦 1 十字相乘法的方法 十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。2 十字相乘法的用處 1 用十字相乘法來分解因式。2 用十字相乘法來解一元二次方程。3 十字相乘法的優點 用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯...