數學相乘法是什麼,數學十字相乘法是什麼?

時間 2022-02-11 23:40:13

1樓:匿名使用者

十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便,以下是我對十字相乘法提出的一些個人見解。

1、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。

2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。

3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。

4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式型別的題目。3、十字相乘法比較難學。

5、十字相乘法解題例項:

2樓:夢想飛舞遠方

十字相乘法能把某些二次三項式分解因式,方法是先把方程式化為右邊等於0的式子,然後分別把二次項係數和常數項分解成兩個數相乘的結果,然後試著把二次項係數分解的兩個因數與常數項分解的兩個因數交叉相乘,然後再相加,若等於一次項係數的話,那麼該方程式就等於二次項係數分解的第一個因數乘以x加上常數項分解的第一個因數括起來 乘以二次項係數分解的第二個因數乘以x加上常數項分解的第二個因數括起來 如6x^2-7x-5=(2x+1)(3x-5)

3樓:匿名使用者

很詳盡。

怎麼用十字相乘法。十字相乘法口訣是什麼

4樓:小小芝麻大大夢

1、十字相乘法的方法口訣:

十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。

2、十字相乘法的用處:

(1)用十字相乘法來分解因式。

(2)用十字相乘法來解一元二次方程。

十字相乘法的優點:

用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。

十字相乘法的缺陷:

1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。

2、十字相乘法只適用於二次三項式型別的題目。

3、十字相乘法比較難學。

擴充套件資料

十字分解法能用於二次三項式(一元二次式)的分解因式(不一定是整數範圍內)。對於像ax²+bx+c=(a1x+c1)(a2x+c2)這樣的整式來說,這個方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積,把常數項c分解成兩個因數c1,c2的積,並使a1c2+a2c1正好等於一次項的係數b。

那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。

當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

5樓:吳敏和

十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。

十字相乘法能把二次三項式分解因式(不一定在整數範圍內)。對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好等於一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。

在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:

x²+(p+q)x+pq=(x+p)(x+q)。

6樓:要不辛

十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。

7樓:橙橙橙

都不審題,看看樓主問的啥,x^2-4x+4=0啊,-2 + -2=中間-4,故答案為(x-2)*(x-2)=(x-2)^2

8樓:ooo賬號登入

x平方+(a+b)x+ab=(x+a)(x+b)

9樓:匿名使用者

公式:㎡±ab±mb±ma=(m±a)(m±b)

10樓:紹涆

什麼叫函式

十字相乘法

因式分解法

11樓:fx_自由風

首尾分解

交叉相乘

求和湊中

平行書寫

12樓:塗山容紅

頭尾分解,交叉相乘,求和湊中,觀察試驗。

13樓:快樂大某了

咯啦咯考慮圖我努力咯兔兔

數學「十字相乘」的方法

14樓:※尤琪

十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便,以下是我對十字相乘法提出的一些個人見解。

1、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。

2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。

3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。

4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式型別的題目。3、十字相乘法比較難學。

5、十字相乘法解題例項:

1)、 用十字相乘法解一些簡單常見的題目

例1把m²+4m-12分解因式

分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題

解:因為 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題

解: 因為 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。

解: 因為 1 -3

1 ╳ -5

所以原方程可變形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解: 因為 2 -5

3 ╳ 5

所以 原方程可變形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比較難的題目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y

解: 因為 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-2y)(7x-9y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本題中,要把這個多項式整理成二次三項式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].

例7:解關於x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法進行因式分解

解:x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

注意1.用十字相乘法把某些形如ax2+bx+c的二次三項式分解因式時,應注意以下問題:

(1)正確的十字相乘必須滿足以下條件:

a1 c1

在式子 � 中,豎向的兩個數必須滿足關係a1a2=a,c1c2=c;在上式中,斜向的

a2 c2

兩個數必須滿足關係a1c2+a2c1=b.

(2)由十字相乘的圖中的四個數寫出分解後的兩個一次因式時,圖的上一行兩個數中,a1是第一個因式中的一次項係數,c1是常數項;在下一行的兩個數中,a2是第二個因式中的一次項的係數,c2是常數項.

(3)二次項係數a一般都把它看作是正數(如果是負數,則應提出負號,利用恆等變形把它轉化為正數,)只需把它分解成兩個正的因數.

2.形如x+px+q的某些二次三項式也可以用十字相乘法分解因式.

3.凡是可用代換的方法轉化為二次三項式ax+bx+c的多項式,有些也可以用十字相乘法分解因式,如例4.

什麼是十字相乘法及數學舉例和原理。

15樓:的絕佳

十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項,右邊相乘等於常數項,交叉相乘再相加等 於一次項。其實就十字相乘法能把某些二次三項式分解因式。

對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好是一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。

當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。

相乘法公式,十字相乘法公式!

瞬翼流 要有耐心哦 1 十字相乘法的方法 十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。2 十字相乘法的用處 1 用十字相乘法來分解因式。2 用十字相乘法來解一元二次方程。3 十字相乘法的優點 用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯...

什麼是相乘法,什麼是十字相乘法??

十字分解法的方法簡單來講就是 十字左邊相乘等於二次項,右邊相乘等於常數項,交叉相乘再相加等於一次項。其實就是運用乘法公式 x a x b x a b x ab的逆運算來進行因式分解。十字分解法能把二次三項式分解因式 不一定在整數範圍內 對於形如ax bx c a1x c1 a2x c2 的整式來說,...

相乘法怎麼用,十字相乘法怎麼用???

十字相乘法能把某些二次三項式ax 2 bx c a 0 分解因式。這種方法的關健是把二次項的係數a分解成兩個因數a1,a2的積a1 a2,把常數項c分解成兩個因數c1,c2的積c1 c2,並使a1c2 a2c1正好是一次項係數b,那麼可以直接寫成結果 ax 2 bx c a1x c1 a2x c2 ...