1樓:匿名使用者
解:f(x)=3sin²x+2√3sinxcosx+cos²x=3(1-cos2x)/2+√3sin2x+(1+cos2x)/2=√3sin2x-cos2x+2
=2[sin2x*cos(π/6)-cos2x*sin(π/6)]+2
=2sin(2x-π/6)+2
(1) 當2x-π/6=2kπ+π/2,k∈z時,有最大值 4
增區間 2kπ-π/2≤2x-π/6≤2kπ+π/22kπ-π/3≤2x≤2kπ+2π/3
kπ-π/6≤x≤kπ+π/3
增區間【 kπ-π/6,kπ+π/3】k∈z(2)f(x)≥3
2sin(2x-π/6)+2≥3
sin(2x-π/6)≥1/2
2kπ+π/6≤2x-π/6≤2kπ+5π/62kπ+π/3≤2x≤2kπ+π
kπ+π/6≤x≤kπ+π/2
使f(x)大於不等於3成立的x集合.
2樓:匿名使用者
f(x)=3sin平方x+2根號3sinxcosx+cos平方x=2sin^2x+√3sin2x+1
=√3sin2x-cos2x+2
=2sin(2x-π/6)+2
(1) fmax=4
減區間 2kπ+π/2<=2x-π/6<=2kπ+3π/2kπ+π/3<=x<=kπ+5π/6
[kπ+π/3,kπ+5π/6] k∈z2. 2sin(2x-π/6)+2<=3sin(2x-π/6)+2<=1/2
2kπ-7π/6<=2x-π/6<=2kπ+π/6kπ-π/2<=x<=kπ+π/6
成立的x集合 [kπ-π/2,kπ+π/6] k∈z
3樓:匿名使用者
f(x)=3sin²x+2√3sinxcosx+cos²x=2sin²x+√3sin2x+1=1-cos2x+√3sin2x+1
=2sin(2x-π/6)+2
當2x-π/6=2kπ+π/2時,f(x)取得最大值2+2=4;
由:2kπ-π/2≤2x-π/6≤2kπ+π/2即:kπ-π/6≤x≤kπ+π/3時,f(x)遞增;
所以f(x)的增區間為:[kπ-π/6,kπ+π/3];
f(x)>3,即:sin(2x-π/6)>½; 則:2kπ+π/6<2x-π/6<2kπ+5π/6;
kπ+π/63成立的x的集合為( kπ+π/6,kπ+π/2)
4樓:
3sin²x+2√3sinxcosx+cos²x=2sin²x+2√3sinxcosx+1=4sinx(1/2sinx+√3/2cosx)+1=4sinx(cosπ/3sinx+sinπ/3cosx)+1=4sinxsin(x+π/3)+1
=-2[cos(2x+π/3)-cos(π/3)+1=-2cos(2x+π/3)+2
(1)函式最大值4,單調遞增區間2x+π/3=[2nπ,(2n+1)π)
x=[nπ-π/6,nπ+π/3]
(2)求使f(x)大於不等於3成立的x集合.
f(x)=-2cos(2x+π/3)+2>3cos(2x+π/3)<-1/2
2π/3+2nπ<2x+π/3<4π/3+2nππ/6+nπ<x<π/2+nπ
幫忙解道數學題
解 設ab為x,ab ac 1 3 ac 3x ac ad 1 4 ad 12x ab ac ad 40 x 3x 12x 40 解得x 2.5 所以ab長為2.5,ac長為7.5,ad長為30.bc ac ab 5,cd ad ac 22.5 ab ac 1 3 ac ad 1 4 所以ab ad...
幫忙解三道數學題,大家幫忙解三道數學題哈
10.ad a d abc a b c ab a b b b ad a d 是中線,則d是bc中點,d 是b c 中點bd b d 由角邊角定理得 abd a b d ad a d 11.按提示做輔助線 在 ade和 adf中 ad是公共邊 aed afd 90 ead fad 由此可知 ade和 ...
一道初二數學題,關於函式,初二數學題一道,關於函式
設過點a 3.5 和點b 1,3 的直線解析式為y kx b,則可列以下方程組 5 3k b 3 k b 解得k 2,b 1 即過點a 3.5 和點b 1,3 的直線解析式為y 2x 1而直線y 2x 1與x軸 y軸的交點為 1 2,0 0,1 則此直線與座標軸圍成的圖形面積為 1 2 1 2 1 ...