反證法的基本步驟,反證法證明的一般步驟?

時間 2021-10-14 20:20:42

1樓:愚人談娛樂

假設命題反面成立;從假設出發,經過推理得出和反面命題矛盾,或者與定義、公理、定理矛盾;得出假設命題不成立是錯誤的,即所求證命題成立。

反證法的論證過程

首先提出論題:然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關係的兩個判斷可以同時為假。反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。

2樓:庫懷山冼躍

反證法的證題模式可以簡要的概括我為「否定→推理→否定」。即從否定結論開始,經過正確無誤的推理導致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是「否定之否定」。應用反證法證明的主要三步是:

否定結論

→推匯出矛盾

→結論成立。實施的具體步驟是:

第一步,反設:作出與求證結論相反的假設;

第二步,歸謬:將反設作為條件,並由此通過一系列的正確推理匯出矛盾;

第三步,結論:說明反設不成立,從而肯定原命題成立。

在應用反證法證題時,一定要用到「反設」進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫「歸謬法」;如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫「窮舉法」。

反證法證明的一般步驟?

3樓:茅花

反證法是屬於「間接證明法」一類,是從反面的角度思考問題的證明方法,即:肯定題設而否定結論,從而匯出矛盾推理而得。法國數學家阿達瑪(hadamard)對反證法的實質作過概括:

「若肯定定理的假設而否定其結論,就會導致矛盾」。具體地講,反證法就是從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經證明為正確的命題等相矛,矛盾的原因是假設不成立,所以肯定了命題的結論,從而使命題獲得了證明。

反證法所依據的是邏輯思維規律中的「矛盾律」和「排中律」。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的「矛盾律」;兩個互相矛盾的判斷不能同時都假,簡單地說「a或者非a」,這就是邏輯思維中的「排中律」。反證法在其證明過程中,得到矛盾的判斷,根據「矛盾律」,這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經證明為正確的命題都是真的,所以「否定的結論」必為假。

再根據「排中律」,結論與「否定的結論」這一對立的互相否定的判斷不能同時為假,必有一真,於是我們得到原結論必為真。所以反證法是以邏輯思維的基本規律和理論為依據的,反證法是可信的。

反證法的證題模式可以簡要的概括我為「否定→推理→否定」。即從否定結論開始,經過正確無誤的推理導致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是「否定之否定」。應用反證法證明的主要三步是:

否定結論 → 推匯出矛盾 → 結論成立。實施的具體步驟是:

第一步,反設:作出與求證結論相反的假設;

第二步,歸謬:將反設作為條件,並由此通過一系列的正確推理匯出矛盾;

第三步,結論:說明反設不成立,從而肯定原命題成立。

在應用反證法證題時,一定要用到「反設」進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫「歸謬法」;如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫「窮舉法」。

在數學解題中經常使用反證法,牛頓曾經說過:「反證法是數學家最精當的**之一」。一般來講,反證法常用來證明的題型有:

命題的結論以「否定形式」、「至少」或「至多」、「唯一」、「無限」形式出現的命題;或者否定結論更明顯。

求證一道數學反證法的問題,關於數學反證法的問題

反證法,假設四項全部大於1 1 4a 1 b 4a 1 41 a 3 4 1 4d 1 a 3d 1 31 d 2 3 1 4c 1 d 8c 3 3 81 c 5 8 1 4b 1 c 5b 2 2 51 b 3 5 1 4a 1 b 12a 5 5 121 a 7 12 1 4d 1 a 7d ...

大學用反證法證明函式極限唯一性。急

林清他爹 證明如下 假設存在a,b兩個數都是函式f x 當x x。的極限,且a0 要注意,這個 是對a,b都成立 總存在一個 1 0,當0 丨x x。丨 1時,使得丨f x a丨 成立。總存在一個 2 0,當0 丨x x。丨 2時,使得丨f x b丨 成立。上面的不等式可以等價變換為a 令 min,...

反證法 已知a1,b1 求證a b

證明 反設 a b 1 ab 1即 a b 1 ab 兩邊平方有 a b 2 1 ab 2即a 2 2ab b 2 1 2ab ab 2亦即a 2 b 2 ab 2 1 0即 a 2 1 1 b 2 0 而 a 1,b 1 故a 2 1 0,b 2 1 0 上式顯然不成立,故命題得證 若 a b 1...