1樓:忻倫壬嫻
1+1不全等於2,知道不,在情況不同的地方它就不等於2,它只在算術中等於2。
2樓:竭梓維平培
不一定等於二啊?可以等於三。一個男的加個女的,可以生好幾個賴。把兩杯水倒進一個杯子裡那就是1+1=1嘻嘻。
1+1為什麼等於2
3樓:科學點兵
在上學的時候 老師就告訴過我們1+1=2 這是一個亙古不變的「真理」不過1+1真的等於2嗎如果將一斤鹽溶於一斤水中 會得到兩斤嗎要弄明白這個問題 我們就先要搞清楚一斤鹽是否真的能溶於一斤水呢。
4樓:
根據皮亞諾自然數公理:
1. 0屬於n。
2. 若x屬於n,則x有且只有一個後繼x'。
3. 對任一個x屬於n,皆有x'不等於0。
4. 對任意x,y屬於n,若x不等於y,則x'不等於y'。
5. (歸納公理)設m包含於n,若0屬於m,且對任意x屬於m都有x'屬於m,則m=n。
根據以上公理:將0的後繼記為1,1的後繼記為2,即0'=1,1'=2。
根據加法的定義:存在唯一的一個二元運算+:nxn→n滿足:x+0=x且x+y'=(x+y)'。
將y=0代入x+y'=(x+y)'得:x+0'=(x+0)',由x+0=x以及0'=1得:x+1=x'
將x=1代入上式得:1+1=1'
又由1'=2得,1+1=2。
因此,1+1=2。
定義現代漢語字典對2的定義為1+1的結果。
2是一種語言,表示的1與1相加後的狀態。它的實質就是1+1。數學誕生於形而下的現實世界,人們將一個物體定義為1,一個物體與同一個物體放在一起的狀態定義為2。
比如一單位水與1單位水相加稱為2單位水。加法就是對研究物件中一致的性質的一種運算,比如說1個男人加1個女人之和應該是2個人,因為二者共同的特徵是人,單純對男女性別是無法使用加法運算的,因為這樣的加法根本沒有意義。這也就給我們一個資訊:
實際中的物件是多元的,是豐富的,而數學只是對這些物件某方面特徵的概括,在數學中,1個男人加1個女人之這種運算只是抽取了人作為一個整體的數量特徵,而忽略了其他資訊,所以我們只能得出2個人的結論。總之一句話,加法是對物件共性的一種運算,所以1加1等於2,不具有共性的物件是不能用加法的。
5樓:科學點兵
在上學的時候 老師就告訴過我們1+1=2 這是一個亙古不變的「真理」不過1+1真的等於2嗎如果將一斤鹽溶於一斤水中 會得到兩斤嗎要弄明白這個問題 我們就先要搞清楚一斤鹽是否真的能溶於一斤水呢。
6樓:匿名使用者
如果把2念成3,那你是不是又要問3這個東西為什麼不可以念成4
7樓:妝露染
早在矇昧時代,人們就在對獵物的儲藏與分配等活動中,逐漸產生了數的感覺。當一個原始人面對放在一起的3只羊、3個蘋果或3支箭時,他會朦朧地意識到其中有一種共性。可以想象,他此時會是多麼地驚訝。
但是,從這種原始的感覺到抽象的「數」的概念的形成,卻經過了極其漫長的時間。
一般認為,自然數的概念的形成可能與火的使用一樣古老,至少有著30萬年的歷史。現在我們無法考證,人類究竟在什麼時候發明了加法,因為那時沒有足夠詳細的文獻記錄(也許文字也剛剛誕生)。但加法的出現無疑是為了在交換商品或戰俘時進行運算。
至於乘法和除法,則必定是在加減法的基礎上搞出來的。而分數應該是出於分割物體的需要。
應該說,當某個原始人第一個意識到1+1=2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質——可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時,告訴我們數學的侷限性。
人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的氣體總質量總是等於每個氣體分子質量之和。對於這些量,1+1=2是完全成立的。
第二類是僅僅部分滿足可加性的的量。比如溫度,如果把兩個容器的氣體合併在一起,則合併後氣體的溫度就是原來氣體各自溫度的加權平均(這是一種廣義的「相加」)。但這裡就有一個問題:
溫度這個量不是完全滿足可加性的,因為單個分子沒有溫度。
世界上還有一些事物,他們是徹底拒絕可加性的,比如生命世界裡的神經元。我們可以將容器裡的分子分到兩個容器,使得每個容器裡的氣體仍然保持有巨集觀量——溫度、壓強等。但是,我們對神經元不能這樣做。
我們每個人都會產生幸福、痛苦之類的感覺。生物學告訴我們,這些感覺是由神經元產生的。但是,我們卻不能說,某個神經元會產生多少幸福或痛苦。
不僅每個神經元並不具備這種性質,而且我們也不能將大腦劈成兩半,使得每個半球都有幸福或者痛苦感。神經元不是分子——分子可以隨時分開或者重組,神經元具有協調性,一旦將他們分開,生命就會終結,不可能再組合。
1+1為什麼等於2?
8樓:匿名使用者
關於為什麼1+1=2,因為2被定義為1+1,即2=1+1,根據等式左右互換原則,仍然成立,即1+1=2,證明完畢。
9樓:維絡小熊
個人認為,1+1=2就是最早給出這個數學定義的原始群體或個人定義的。假如你會穿越,穿越到人類知道1+1=2之前,把2和3互換,你定義了1+1=3,1+3=2,後人也會延續這樣的數學事件下來。就像居里夫人發現了鐳元素,她當時如果不叫它鐳,叫「前軲轆不轉後軲轆轉」,那到現在我們也會把居里夫人發現的這個新元素叫「前軲轆不轉後軲轆轉」。
我認為這不是一個數學問題。是個哲學問題。
10樓:科學點兵
在上學的時候 老師就告訴過我們1+1=2 這是一個亙古不變的「真理」不過1+1真的等於2嗎如果將一斤鹽溶於一斤水中 會得到兩斤嗎要弄明白這個問題 我們就先要搞清楚一斤鹽是否真的能溶於一斤水呢。
11樓:匿名使用者
沒有為什麼,就等於2 因為1+1不等於其它數 數學就是我們這個宇宙的規律,1+1=2其實反映的就是物質不滅的思想,因為我們現在的物質世界的多數。
12樓:
1個蘋果+1個蘋果=2個蘋果 所以1+1=2
13樓:網友
去找陳景潤吧,他證明過。
討論1+1為什麼等於2這個問題意義在**?
14樓:此岸彼岸
「1+1為什麼等於2」這個問題其實是一個虛指。
「1+1為什麼等於2」這個問題其實是相對於「1+1等於多少」這個問題來說的。
更加普遍地來說,這兩個問題的區別,其實就是「數學」和「算術」的區別。
算術研究的是「1+1=?」這個問題。算術是數學的一個部分,在人類歷史的發展中,算術更是作為數學的最初形式,但是算數卻不能代替數學。
我們從小學會加、減、乘、除四則運算,而根據數學證明,如冪次、開方等等複雜的運算,都可以歸結到基礎的四則運算裡去。但是算數的原理則過於基礎,如果人類幾千年來只研究算術,那麼數學的發展會停滯不前。算術的應用是很有侷限性的,就像是一臺超級計算機可以用最快的速度解決所有的計算問題,但如果沒有人給它編寫演算法開發程式,那也就只是一臺晶片的集合體,還耗電。
算術更偏重於具體的應用問題,更偏重於答案。
圖為半加器和全加器示意圖。
可以這麼認為,數學研究的是原理,是「為什麼」,算術則更加偏重於答案。算術是數學的一個分支,是數學的一部分,要學好數學首先要學好算術,但不能把算術當成數學。這就是「1+1為什麼等於2」這個問題的意義所在,正如古人說的,「知其然,知其所以然」。
15樓:匿名使用者
證明過程:根據皮亞諾的五條公理用非形式化的方法敘述如下: ①1是自然。
數; ②每一個確定的自然數 a,都有一個確定的後繼數a' ,a' 也是自然數(一個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等); 如果b、c都是自然數a的後繼 數,那麼b = c; ④1不是任何自然數的後繼數; ⑤任意關於自然數的命題,如果證明了它對自然數1是對的,又假定它對自然數n為真時,可以證明它對n' 也真,那麼,命題對所有自然數都真。(這條公理也叫歸納公設,保證了數學歸納法的正確性) 若將0也視作自然數,則公理中的1要換成0。更正式的定義如下:
一個戴德金-皮亞諾結構為一滿足下列條件的三元組(x, x, f): x是一個**,x為x中一個元素,f是x到自身的對映,x不在f的值域內。 f為一個單射。
若 並滿足: x∈a 且若 a∈a, 則f(a)∈a 則a=x. 該公理與由皮阿羅公理引出的關於自然數**的基本假設:
n(自然數集)不是空集 n到n記憶體在a→a直接後繼元素的一一對映;後繼元素對映像的**是n的真子集;若p任意子集既含有非後繼元素的元素,又有含有子集中每個元素的後繼元素,則此子集與n重合。能用來論證許多平時常見又不知其**的定理! 證明:
1+1的後繼數是1的後繼數的後繼數,即3 2的後繼數是3 根據皮亞諾公理④ 可得:1+1=2
16樓:
在於 人類可以用符號 來傳遞意義。
本身1+1 太長了 於是 我們要用一個符號來表示 於是就選擇了2當然 如果選擇的不是2 也可以。
比如 1+1=3 那麼是完全可以的,只不過 3就取代了 現在2的位置於是 我們的自然數 就變成了 1 3 2 4 5 6 7只是2 和 3 的位置換了下 現在的規律是3+1=23*3=4...即 所以原來2的性質 都換成了3 ;3的性質都換成了2
世界一樣執行。
17樓:風靡義磊
學得多了 人們就像回顧一下數學的基本 然後就想到了1+1=2
接著想要像證明題一樣把它證出來 結果做不到很嚴謹 於是就討論起來了。
意義沒有 純屬無聊。
18樓:匿名使用者
因為1個手指+1個手指等於2個手指。
19樓:匿名使用者
不會說不定就沒有什麼時候開始:不:不了自己什麼都不願意承認罷了。
20樓:愛旭陽
意義就是,蘋果熟了從樹上掉下來,普通人眼裡天經地義,牛頓眼裡值得深思,於是牛頓弄出了地球引力這個概念。
21樓:軒轅幽道
意義在於可以弄清楚數字是如何誕生的,運演算法則是如何定義出來的。
1+1為什麼等於2?
22樓:平安幸福
1+1為什麼等於2?這個問題看似簡單卻又奇妙無比。在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。
什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。
1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,所以它也是無法用數學的方法證明的。至於1+1為什麼等於2?
作為一個問題,沒要求大家必須用數學的方法證明,其實只要說明為什麼1+1=2就可以了,可以說這是定義,也可以說這是公理。不過用反證法還是可以證明的:假設1+1不等於2,則數學就是一鍋粥,凡是用到數學的地方都是一鍋粥,人類社會就亂了套了,所以1+1必須等於2。
1+1=2看似簡單,卻對於人類認識世界有非同尋常的意義。人類認識世界的過程就像一個小孩滾雪球的過程:第一步,小孩先要用雙手捧一捧雪,這一捧雪就相當於人類對世界的感性認識。
第二步,小孩把手裡的雪捏緊,成為一個小雪球,這個小雪球就相當於人類對感性認識進行加工,形成了概念。於是就有了1。第三步,小孩把雪球放在地上,發現雪球可以粘地上的雪,這就相當於人類的理性認識。
雪可以粘雪,相當於1+1=2。
1 1為啥等於2,1 1為什麼等於
因為二等於愛情 也是兩個人的世界。因為等於而所以等於二。1 1為什麼等於2 在上學的時候 老師就告訴過我們1 1 2 這是一個亙古不變的 真理 不過1 1真的等於2嗎如果將一斤鹽溶於一斤水中 會得到兩斤嗎要弄明白這個問題 我們就先要搞清楚一斤鹽是否真的能溶於一斤水呢。根據皮亞諾自然數公理 1.0屬於...
為什麼1 1等於2呢,1 1為什麼等於2?
因為所以,科學道理。1 1為什麼等於2?1 1 2 是初等數學範圍內的數值計算等式。當某個原始人第一個意識到1 1 2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質 可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時...
1 1為什麼等於,1 1為什麼等於
龍蕾摩月 即任一偶數 自然數 可以寫為2n,這裡n是一個自然數,2n可以表示為n個不同形式的一對自然數之和 2n 1 2n 1 2 2n 2 3 2n 3 n n 在篩去不適合哥德 猜想結論的所有那些自然數對之後 例如1和2n 1 2i和 2n 2i i 1,2,3j和 2n 3j j 2,3,等等...