1 1為什麼等於,1 1為什麼等於

時間 2021-09-08 21:03:50

1樓:龍蕾摩月

即任一偶數(自然數)可以寫為2n,這裡n是一個自然數,2n可以表示為n個不同形式的一對自然數之和:

2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n

在篩去不適合哥德**猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麼p1和p2都是素數,即得n=p1+p2,這樣哥德**猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。

目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解決了。

然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關型別質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(注:1+2

或2+1

同屬質數+合數型別)在參與無限次的"類別組合"時,所有可發生的種種有關聯絡即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯絡,就可匯出的"類別組合"為1+1,1+1與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2

兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:

1+2與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。

這就徹底論證了布朗篩法不能證"1+1"。

由於素數本身的分佈呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關係,偶數值增大時素數對值忽高忽低。能通過數學關係式把素數對的變化同偶數的變化聯絡起來嗎?不能!

偶數值與其素數對值之間的關係沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明歌德**猜想的人們,他們的努力,只使數學的某些領域得到進步,而對歌德**猜想證明沒有一點作用。

歌德**猜想本質是一個偶數與其素數對關係,表達一個偶數與其素數對關係的數學表示式,是不存在的。它可以從實踐上證實,但邏輯上無法解決個別偶數與全部偶數的矛盾。個別如何等於一般呢?

個別和一般在質上同一,量上對立。矛盾永遠存在。歌德**猜想是永遠無法從理論上,邏輯上證明的數學結論。

2樓:平安幸福

1+1為什麼等於2?這個問題看似簡單卻又奇妙無比。在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。

什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。

1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,所以它也是無法用數學的方法證明的。至於1+1為什麼等於2?

作為一個問題,沒要求大家必須用數學的方法證明,其實只要說明為什麼1+1=2就可以了,可以說這是定義,也可以說這是公理。不過用反證法還是可以證明的:假設1+1不等於2,則數學就是一鍋粥,凡是用到數學的地方都是一鍋粥,人類社會就亂了套了,所以1+1必須等於2。

1+1=2看似簡單,卻對於人類認識世界有非同尋常的意義。人類認識世界的過程就像一個小孩滾雪球的過程:第一步,小孩先要用雙手捧一捧雪,這一捧雪就相當於人類對世界的感性認識。

第二步,小孩把手裡的雪捏緊,成為一個小雪球,這個小雪球就相當於人類對感性認識進行加工,形成了概念。於是就有了1。第三步,小孩把雪球放在地上,發現雪球可以粘地上的雪,這就相當於人類的理性認識。

雪可以粘雪,相當於1+1=2。

3樓:莘士恩玉珍

其實1+1=2等概念的出現是為了滿足人類日常生活的需求。因為社會越發達了,生活中的資料便複雜了,而人們就想要把複雜的資料簡單化就把2代表兩個1然後以此類推。當你把兩個1加在一起,就可以換成2來更簡潔地表達啦。

4樓:勢採萱

因為是古人規定的,數字的順序是,123456…

5樓:留疏君

一個一個那不是兩個嗎所以1+1=2

1+1為什麼等於2?

6樓:薔祀

1+1=2 是初等數學範圍內的數值計算等式。

當某個原始人第一個意識到1+1=2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質——可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時,告訴我們數學的侷限性。

人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的氣體總質量總是等於每個氣體分子質量之和。對於這些量,1+1=2是完全成立的。

擴充套件資料

皮亞諾公理,也稱皮亞諾公設,是數學家皮亞諾(皮阿羅)提出的關於自然數的五條公理系統。根據這五條公理可以建立起一階算術系統,也稱皮亞諾算術系統。

皮亞諾的這五條公理用非形式化的方法敘述如下:

①0是自然數;

②每一個確定的自然數 a,都有一個確定的後繼數x' ,x' 也是自然數(一個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);

③如果b、c都是自然數a的後繼數,那麼b = c;

④0不是任何自然數的後繼數;

⑤設s是自然數集的一個子集,且(1)0屬於s;(2)如果n屬於s,那麼n'也屬於s。

(這條公理也叫歸納公理,保證了數學歸納法的正確性)

更正式的定義如下:  一個戴德金-皮亞諾結構是這樣的一個三元組(x, x, f),其中x是一個集合,x為x中一個元素,f是x到自身的對映,且符合以下條件:

x不在f的值域內;

f為一個單射;

若x∈a 且 " a∈a 蘊涵 f(a)∈a",則a=x。

7樓:匿名使用者

1+1為什麼等於2?

1+1=2,幼兒園裡的小孩都知道,就是這麼簡單的東西,卻耗費了大數學家陳景潤一生的心血,雖大有斬獲,卻臨終也不敢說1+1就是等於2。為什麼?是不是我們每個人都知道這裡面的奧妙呢?

先來點兒基礎知識:

偶數:能被2整除的數,如2、4、6、8、10、12、14、16、18、20等等。

質數(以前叫素數):只能被它自己和1整除的數,如2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97等等,不知道誰規定的1不是質數。

哥德**猜想:任何一個大偶數(大於等於6),都是兩個奇質數之和(即:除2之外的任何質數)。

原文是:任何不小於6的偶數,都是兩個奇質數之和;任何不小於9的奇數,都是3個奇質數之和。

此人2023年6月7日提出了這個猜想,經過世界各國幾代數學家的不懈努力,直到2023年才多少有了點的眉目,真是「不學無術」,只會提問題,不會解決問題,弄得後人為他這一句話忙活了幾百年,直到現在還沒解決。但後來有人說,提出問題的人比解決問題的人更有學問,你說是嗎?

驗證一下這個猜想,先從小偶數開始:

6=3+3,8=5+3,10=5+5=3+7,12=7+5,14=7+7,16=13+3=11+5,18=13+5,20=17+3=13+7,22=19+3=17+5=11+11,24=19+5=17+7=13+11,26=23+3=19+7=13+13,28=23+5=17+11=15+13,30=23+7=19+11=17+13,好像都對,但是,是不是一個非常大的偶數,也是兩個質數的和呢?

算了,不驗證了,這樣下去何年何月才是個頭啊?!況且有人用超級計算機已經驗證到2的3000多次方,都符合上述規律。但再大的數會不會也符合這個規律呢?

難道你沒看出點門路來?就沒明白1+1=2是什麼意思?

用一個公式來說明:2n=p+q。(此公式如被證明是對的,那麼哥德**猜想就不是猜想,而是定理了)

說明:n=,p、q是大於2的質數。

我的理解:1+1=2是指任何一個大於等於6的偶數,都可以分解為兩個質數相加,而不需要3個,或更多個。

陳景潤完成了1+2,即需要3個,距離僅需要2個還有千里之遙。

要想完全證明1+1=2,還待時日。

再補充一點東東:

有人說,證明「猜想」,本來是非常簡單的,卻把簡單的問題複雜化作為什麼高深課題去研究,葬送了一批批數學家的青春年華。說不定什麼時候,某個「權威」提出要證明2=1+1,用什麼「高階微分數論篩法」篩出2=1+0.999¨¨¨來,也許會轟動一時。

正如列寧說的,沒有上帝,也要弄些泥巴捏出一個上帝來供人們朝拜。2=1+1,幼兒園的小朋友都明白,如果2=1+0.999……,或者2 =1+1.

000……1,一些小學生也感到茫然,以為是什麼高深的學問。李政道博士說過,把簡單的問題複雜化不是學問。

這只是對數學一無所知的人的謠傳。

陳氏定理(陳景潤先生):每個大於等於12的偶數可以表示成p+q1*q2(應是[p2×p3 ],未定義q1、q2為素數,下同)的形式,其中p,q1,q2都是素數。這個定理簡稱為1+2(1+2=3,應為「1+2」,這是很簡單的基本知識,做學問既要謙虛,又要紮紮實實,不能浮躁。

)。在陳氏定理之前,有認證明過:每個大於等於30的偶數可以表示成p+q1*q2*q3的形式,其中p,q1,q2,q3都是素數。

這個定理簡稱為1+3(1+3=4,應是「1+3」)。我想現在你可以知道了:1+1(1+1只是加法,應該是「1+1」)只是一個簡稱,代表的是:

每個大於等於6的偶數可以表示成p+q1的形式,其中p,q1都是素數(奇素數)。這個命題簡稱為1+1(應該是「1+1」),其實就是哥德**猜想了。

你現在可以自己推廣一下簡稱為1+n的定理,甚至相象2+n,3+n...,所有這些都是比哥德**猜想弱。因為哥德**猜想很難證明,歷史上的數學家們希望可以先證明一些較弱的定理,從中找到證明哥德**猜想的思路或者啟示。

目前最好的結果就是陳景潤的1+1(應是「1+2」)。你有權利說這樣的路子無助於解決哥德**猜想,但別人也有權利認為這是一個好的思路。

1 1為什麼等於,1 1為什麼等於

幻世萌 我想1 1 2不能證明,他只能說是一個定率。最原始的定律。1 1 2 目前還沒有人證明出來他為什麼 2 老陳也只證明出1 2。就很了不得了。假設有一天有人證明出來1 1不等於2 這個世界不知道會變成什麼樣。當年歌德 寫信給尤拉,提出這麼兩條猜想 1 任何大於2的偶數都能分成兩個素數之和 2 ...

1 1為什麼等於,1 1為什麼等於

暴躁的鶴 因為人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的氣體總質量總是等於每個氣體分子質量之和。對於這些量,1 1 2是完全成立的。第二類是僅僅部分滿足可加性的的量。比如溫度,如果把兩個容器的氣體合併在一起,則合併後氣體的溫度就是原來氣體各自溫度的加權平均 這是...

1 1為什麼等於,1 1為什麼等於

在數理邏輯中,當初希爾伯特是由個構想,就是從集合論,從自然數出發定義整個數學體系,樓主你說的值時希爾伯特的第一步而已,不過後來證明希爾伯特的構想不能實現,可惜了。這個要用到集合論啊,樓主你確認消化的了麼,不是有多麼高深,而是深究起來要精力啊 一個是我沒有絕對的,都是相對的。經過多個數學家研究1 1 ...