f與g互為反函式都有什麼性質,fx與gx互為反函式都有什麼性質

時間 2021-08-11 17:48:30

1樓:匿名使用者

(1)互為反函式的兩個函式的圖象關於直線y=x對稱;

(2)函式存在反函式的充要條件是,函式在它的定義域上是單調的;

(3)一個函式與它的反函式在相應區間上單調性一致;

(4)偶函式一定不存在反函式,奇函式不一定存在反函式.若一個奇函式存在反函式,則它的反函式也是奇函式.

2樓:匿名使用者

【反函式的性質】

(1)互為反函式的兩個函式的圖象關於直線y=x對稱;

(2)函式存在反函式的充要條件是,函式在它的定義域上是單調的;

(3)一個函式與它的反函式在相應區間上單調性一致;

(4)偶函式一定不存在反函式,奇函式不一定存在反函式.若一個奇函式存在反函式,則它的反函式也是奇函式.

(5)一切隱函式具有反函式;

(6)一段連續的函式的單調性在對應區間內具有一致性;

(7)嚴格增(減)的函式一定有嚴格增(減)的反函式【反函式存在定理】.

(8)反函式是相互的

(9)定義域、值域相反對應法則互逆

(10)不是所有函式都有反函式如y=x^2n(x的偶數次方)

3樓:

若有f(x)和g(x)互為反函式,則x=f(g(x))=g(f(x)),你是不是要這個!

4樓:匿名使用者

偶函式一定不存在反函式,是錯誤的,例如y=cosx就是偶函式,它的反函式是y=arccosx

互為反函式的兩個函式有什麼性質

5樓:枝旺敖晗玥

【反函式的性bai質】

(1)互為du反函式

的zhi兩個函式的圖象關於直線y=daox對稱;回(2)函式存在答反函式的充要條件是,函式在它的定義域上是單調的;

(3)一個函式與它的反函式在相應區間上單調性一致;

(4)偶函式一定不存在反函式,奇函式不一定存在反函式.若一個奇函式存在反函式,則它的反函式也是奇函式.

(5)一切隱函式具有反函式;

(6)一段連續的函式的單調性在對應區間內具有一致性;

(7)嚴格增(減)的函式一定有嚴格增(減)的反函式【反函式存在定理】.

(8)反函式是相互的

(9)定義域、值域相反對應法則互逆

(10)不是所有函式都有反函式如y=x的偶次方例:y=2x-1的反函式是y=0.5x+0.5y=2^x的反函式是y=log2 x

例題:求函式3x-2的反函式

y=3x-2的定義域為r,值域為r.

由y=3x-2解得

x=1/3(y+2)

將x,y互換,則所求y=3x-2的反函式是y=1/3(x+2)

6樓:中公教育

互為反函式的兩個函式的圖象關於直線y=x對稱

7樓:匿名使用者

兩個互為反函式的影象關於y=x對稱

定義域和值域互換

8樓:青州大俠客

圖象關於直線y=x對稱

反函式與原函式的關係,反函式和原函式的關係

尉典羽天睿 原函式 y y x 反函式 x x y y dy dx x dx dy 因此 y 1 x 或者 dy dx 1 dx dy 即 原函式的導數等於反函式導數的倒數,因此你說的作法是成立的。 關係是關於y x對稱。理由 設 x,y在baiy f x 上 於是 x f 1 y 即 y,x 在y...

已知函式f(x)對任意的實數x,y都有都滿足f(x y

1.證 設x2 x1 m m為 0的常數 由x 0時,f x 1得f m 1 f x2 f x1 m f x1 f m 1 f x1 1 1 f x1 f x2 f x1 函式f x 是r上的增函式。2.由解集構造不等式 x 3 x 2 0 x x 6 0 x x 4 2 此不等式與f x ax 5...

訊號與系統中t 是連續函式嗎,在《訊號與系統》f t 變成f t t 的波形是怎麼變的,為什麼?

116貝貝愛 是連續函式 解題過程 性質 在某點連續的有限個函式經有限次和 差 積 商 分母不為0 運算,結果仍是一個在該點連續的函式。連續單調遞增 遞減 函式的反函式,也連續單調遞增 遞減 連續函式的複合函式是連續的。閉區間上的連續函式在該區間上一定有界。存在一個正數m,使得對於任意x a,b 都...