初中數學證明根號2是無理數,證明根號2是無理數

時間 2022-03-04 23:00:07

1樓:匿名使用者

假設根號二是一分數,設其為(p/q)(p,q互質),由根號二的意義得(p/q)的平方=2,即有(p的平方/q的平方)=2,故q的平方=2倍的p的平方。

請注意,2倍的p的平方必定是偶數,因而q的平方也必定是偶數,進而q一定是偶數。於是可設q=2k(k是正整數),由上述式子得

(2k)的平方=2倍的p的平方,從而2倍的k的平方=p的平方。

所以p的平方必定是偶數,於是p也是偶數,這與p,q互質矛盾。

這個矛盾表明我們的假設「根號二是一分數」不成立,所以根號二既非整數,也非分數,就是說,根號二是無理數。

參考資料

《數學》初二上冊第12頁

2樓:匿名使用者

用反證法。

假定^2是有理數,那麼一定可以表示為p/q,其中p和q是互質的自然數,且q<>1。

兩邊同時平方,得到:

2=p^2/q^2

由於平方運算不影響原來自然數的奇偶性,即偶數的平方還是偶數,奇數的平方還是奇數,因此上式也可以寫為:

2=p/q,

而且平方操作也不影響互質性,因此p和q是互質的自然數,且q<>1。

1 p,q不可能都是偶數,因為這違背了「互質」的前提,因為兩個偶數必然有公因子2;

2 p,q不可能都是奇數,因為兩個奇數相除不可能得到2;

3 只有一種可能性是p,q為一奇數,一偶數,但是這樣一來,p就有了q作為它的因子,這與題設中互質的前提又有矛盾。

綜合1/2/3,我們不可能找到這樣兩個自然數p, q來表示根號2。因此根據有理數的定義,根號2只能是無理數。證畢。

3樓:初中數學九筒老師

20190821 數學04

4樓:匿名使用者

假設根號二是有理數設 根號2=n/m(m,n屬於z,m,n互質)根號2*m=nn方=2*m方n是2的倍數設n=2k則4k方=2m方m方=2*k方(m方為偶數)所以 m為偶數所以 2為m,n公約數與 m,n互質矛盾所以根號2不是有理數得證

5樓:匿名使用者

假設存在這樣一個有理數p, p^2 = 2. 再設p = a/b, a、b是兩正整數,且既約,就是沒有除1外的共因子,使得(a/b)^2 = 2; 變形以後得a^2 = 2 * b^2,推出a^2是個偶數,同時為了滿足a^2是個平方數,那b^2必須包含一個因子2,所以a^2 / b^2不是既約的,那a/b也不是既約的啦!與前提矛盾,證得根號2不是有理數!

6樓:匿名使用者

證明:假設√2不是無理數,而是有理數。

既然√2是有理數,它必然可以寫成兩個整數之比的形式:

√2=p/q

又由於p和q沒有公因數可以約去,所以可以認為p/q 為既約分數,即最簡分數形式。

把 √2=p/q 兩邊平方

得 2=(p^2)/(q^2)

即 2(q^2)=p^2

由於2q^2是偶數,p 必定為偶數,設p=2m由 2(q^2)=4(m^2)

得 q^2=2m^2

同理q必然也為偶數,設q=2n

既然p和q都是偶數,他們必定有公因數2,這與前面假設p/q是既約分數矛盾。這個矛盾是有假設√2是有理數引起的。因此√2是無理數。

證明根號2是無理數

7樓:顏代

證明:假設√2是有理數。那麼可用互質的兩個數m、n來表示√2。

即√2=n/m。

那麼由√2=n/m可得,

2=n^2/m^2,即n^2=2*m^2

因為n^2=2*m^2,那麼n^2為偶數,則n也為偶數。

則可令n=2a,那麼(2a)^2=2*m^2,化簡得2a^2=m^2,同理可得m也為偶數。

那可令m=2b。

那麼由m=2b,n=2a可得m與n有共同的質因數2,即m和n不是互質的兩個數。

所以假設不成立。

即√2是有理數不成立,那麼√2是無理數。

8樓:初中數學九筒老師

20190821 數學04

9樓:鮮日國漢

反證法如果√2是有理數,

必有√2=p/q(p、q為互質的正整數)

兩邊平方:2=p^/q^

p^=2q^

顯然p為偶數,

設p=2k(k為正整數)

有:4k^=2q^,

q^=2k^

顯然q業為偶數,

與p、q互質矛盾

∴假設不成立,√2是無理數

10樓:

假設根號2是有理數

有理數可以寫成一個最簡分數

及兩個互質的整數相除的形式

即根號2=p/q

pq互質

兩邊平方

2=p^2/q^2

p^2=2q^2

所以p^2是偶數

則p是偶數

令p=2m

則4m^2=2q^2

q^2=2m^2

同理可得q是偶數

這和pq互質矛盾

所以假設錯誤

11樓:郝宸呼延華茂

證明:假設√2不是無理數,而是有理數。

既然√2是有理數,它必然可以寫成兩個整數之比的形式:

√2=p/q

又由於p和q沒有公因數可以約去,所以可以認為p/q為最簡分數,即最簡分數形式。

把√2=p/q

兩邊平方

得2=(p^2)/(q^2)

即2(q^2)=p^2

由於2q^2是偶數,p

必定為偶數,設p=2m

由2(q^2)=4(m^2)

得q^2=2m^2

同理q必然也為偶數,設q=2n

既然p和q都是偶數,他們必定有公因數2,這與前面假設p/q是最簡分數矛盾。這個矛盾是由假設√2是有理數引起的。因此√2是無理數。

12樓:曾自覃寄春

證明:假設根號2為有理數,則可表示為兩個最簡整數比的形式:

根號2=p/q

則兩邊平方得:2=

p2/q2

因為2q2必為偶數

所以p必為偶數,設為p=2m,(m屬於z)則p2=4m2=2q2,q2=2m2

所以,p必為4的倍數,q必為2的倍數!

則p,q必有公因數2,p/q不為最簡整數比!

與假設相矛盾

所以,假設錯誤,根號2為無理數!

13樓:匿名使用者

反證法假設√2是有理數,則√2=m/n(m,n是互質的整數)所以m^2=2n^2,

2n^2是偶數,所以m^2是偶數,所以m=2k(k∈z),所以4k^2=2n^2,2k^2=n^2,所以n也是偶數。

這與m,n互質矛盾

所以假設不成立得證。

14樓:匿名使用者

反證法:設根號2為有理數,則它可化為兩個整數相除的形式.分母為整數,假設分母不含因子根號2,則分子必定含有因子根號2,又分子為整數,則分子中根號2的個數必定為偶.

既然分子中根號2個數為偶,則它與分母相除就得不到根號2,這就產生了矛盾。

15樓:軒轅流霜

假設根號2是有理數

那麼根號2可以由兩個互質的素數表示成p/q即根號2=p/q

p=根號2*q

兩邊平方得p^2=2*q^2

所以p^2為偶數

所以p為偶數

所以p^2為4的整數倍

所以q^2為偶數

所以q為偶數

得到p、q均為偶數,並不互質

與假設矛盾

所以根號2為無理數

16樓:飽和食鹽水

有理數的性質是它可以化成一個分數m/n的形式,且m,n互質.設根2=m/n 則2=m^2/n^2

所以m^2為2的倍數,所以m為偶數.設m=2k,代入原式,所以n^2=2k^2,則n又為的倍數.

而這與m,n互質矛盾,所以不存在這樣的m,n.

所以根2為無理數.

17樓:匿名使用者

假設根號2為有理數,那麼必然可以表示為兩個整數之比,即m/n設m/n為最簡分數,即m.n互質

因為m/n=2

所以(m/n)^2=m^2/n^2=2

m^2=2n^2

所以m^2為偶數,即m為偶數

不妨設m=2k

那麼m^2=4k^2

所以n^2=m^2/2=2k^2

所以n^2為偶數,即n為偶數

所以m,n均為偶數,m/n必有公約數2,即m/n不是最簡分數,與假設矛盾,所以根號2不能表示為兩個整數m/n之比,所以不是有理數,即是無理數

18樓:匿名使用者

設根號2是有理數

根號2=m/n mn為互質整數

則2=m方/n方

m方=2m方 即m方是偶數,m為偶數

m為偶數,則m方為4的倍數

則n方為偶數,n為偶數

則mn不互質

與假設矛盾

所以:根號2是無理數

這種方法叫反證法,

1,假設相反的情況成立

2,根據假設得出於假設矛盾的結論

3,從而證明假設錯誤,原命題正確

19樓:匿名使用者

證明:如果根號2是有理數,

則滿足有理數的性質:任何有理數可以表示成p/q的形式其中p,q為正整數並且p,q互素即最大公約數是1則根據最大公因數的性質有正整數m,n

使mp+nq=1 …………(1)

因為 p/q=根號2 ,為有理數

所以 p=(根號2)*q也是有理數(根據有理數域性質)…………(2)代入(1)

m*(根號2)*q+nq=1 …………(3)又因為m>=1,根號2>1,q>=1,n>=1,所以m*(根號2)*q+nq>1,

與(3)矛盾

所以根號2為無理數證畢!

20樓:蕭泊星辰

上面的反證法是有漏洞的,題目要求證明√2是無理數,就相當於證明只有偶數的平方才是偶數,因此「只有偶數的平方才是偶數」是不能作為論據的,因為那是待證明的結論。

況且,既然假設了√2是有理數,那麼√2這個「有理數」的平方就是偶數,何來「只有偶數的平方才是偶數」?

嚴格的反證法應該是:

假設√2是有理數,即√2=m/n,m/n為最簡分數

由於1<√2<2,所以0<(√2-1)<1

因此m>(√2-1)m=2n-m∈n ; n>(√2-1)n=m-n∈n

所以,√2的最簡分數形式也許為[(√2-1)m]/[(√2-1)n],但肯定不是m/n,這與假設矛盾。故√2是無理數。

怎麼證明根號2是無理數

21樓:還好知道點

此題可用反證法進行證明,具體證明過程如下:

假設根號2是有理數,則根號2可以表示為一個分數,因為任何一個有理數都可以表示為分數形式,不妨設根號2=a/b,其中a、b都是正整數,且為最簡,即不能再約分(即a、b只能一個為奇數,一個為偶數),很顯然,b≠1;

則兩邊分別平方,可得2=a²/b²

即a²可被b²整除,分兩種情況考慮

1、a為奇數、b為偶數,此時a²仍為奇數、b²仍為偶數,這時a²顯然不能被b²整除,即這種情況不滿足題意;

2、a為偶數、b為奇數,此時a能被2整除,則a²能被4整除,則a²/2仍為偶數,而根據假設a²/2=b²,此時b²應為奇數;但該情況時b為奇數,b²則也為奇數,即不滿足題意。

綜合考慮,由假設得出的結論均存在矛盾,則證明假設錯誤,原命題正確。

即根號2為無理數是正確的。

22樓:初中數學九筒老師

20190821 數學04

23樓:豐弼資谷秋

假設根號2是有理數

有理數可以寫成一個最簡分數

及兩個互質的整數相除的形式

即根號2=p/q

pq互質

兩邊平方

2=p^2/q^2

p^2=2q^2

所以p^2是偶數

則p是偶數

令p=2m

則4m^2=2q^2

q^2=2m^2

同理可得q是偶數

這和pq互質矛盾

所以假設錯誤

所以根號2是無理數

證明根號2是無理數,怎麼證明根號2是無理數

顏代 證明 假設 2是有理數。那麼可用互質的兩個數m n來表示 2。即 2 n m。那麼由 2 n m可得,2 n 2 m 2,即n 2 2 m 2 因為n 2 2 m 2,那麼n 2為偶數,則n也為偶數。則可令n 2a,那麼 2a 2 2 m 2,化簡得2a 2 m 2,同理可得m也為偶數。那可令...

怎麼證明根號2是無理數

還好知道點 此題可用反證法進行證明,具體證明過程如下 假設根號2是有理數,則根號2可以表示為一個分數,因為任何一個有理數都可以表示為分數形式,不妨設根號2 a b,其中a b都是正整數,且為最簡,即不能再約分 即a b只能一個為奇數,一個為偶數 很顯然,b 1 則兩邊分別平方,可得2 a b 即a ...

如何證明是無理數,怎麼證明 是無理數?

牧時芳勾君 因為沒有一個分數可以表示 可以設 x除以y,但x和y都是有理數,因此假設不成立,所以 是無理數 犁堯岑瑛琭 假設 是有理數,則 a b,a,b為自然數 令f x x n a bx n n 若0 0 0 以上兩式相乘得 0 當n充分大時,在 0,區間上的積分有 0 f x sinxdx n...