線性代數簡單題求解基礎解系完全看不懂

時間 2021-05-07 20:01:14

1樓:墨汁諾

齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。

簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。

例如:a(ηi-η0)=aηi-aη0=b-b=0

即ηi-η0是ax=0的解

而r(a)=r,則ax=0的基礎解繫有n-r個

因此只需證明η1-η0,η2-η0,...

ηn-r-η0線性無關(即向量組秩等於n-r)

即可證明此向量組是ax=0的基礎解系。

令k1(η1-η0)+k2(η2-η0)+k3(η3-η0)+kn-r(ηn-r-η0)=0

即k1η1+k2η2+k3η3+...+kn-rηn-r-(k1+k2+k3+...+kn-r)η0=0

由於ηi線性無關,則

係數k1=k2=k3=...=-(k1+k2+k3+...+kn-r)=0

因此由【1】式,知道η1-η0,η2-η0,.

ηn-r-η0線性無關,從而此向量組是ax=0的基礎解系

2樓:笑傲江湖

謝謝代數這個簡單題求解的過程很明顯要通過正確的計算不足

3樓:匿名使用者

先把係數矩陣用初等行變換到階梯形式,那麼每一行的最開始非零列數就不是自由變數,除開這些列,其他的就是自由變數。然後自己定這些數的值,再就是帶入方程求解。得到的就是基礎解系。

線性代數 求大神 基礎解系證明題 如圖

4樓:zzllrr小樂

a(ηi-η0)=aηi-aη0=b-b=0即ηi-η0是ax=0的解

而r(a)=r,則ax=0的基礎解繫有n-r個因此只需證明η1-η0,η2-η0,...

ηn-r-η0線性無關(即向量組秩等於n-r)即可證明此向量組是ax=0的基礎解系。

令k1(η1-η0)+k2(η2-η0)+k3(η3-η0)+...+kn-r(ηn-r-η0)=0 【1】

即k1η1+k2η2+k3η3+...+kn-rηn-r-(k1+k2+k3+...+kn-r)η0=0

由於ηi線性無關,則

係數k1=k2=k3=...=-(k1+k2+k3+...+kn-r)=0

因此由【1】式,知道η1-η0,η2-η0,...

ηn-r-η0線性無關,從而此向量組是ax=0的基礎解系

一道線性代數題求助,基礎解系怎麼解的,求步驟

5樓:匿名使用者

你把那個方程組列出來,基礎解析自然而然地就出來了。

6樓:匿名使用者

這是齊次線

復性方程制組的基礎啊,建議翻書重新看過。

雖然書上是簡單的階梯陣,這裡不是。

但是要理解核心精髓啊。

搞出階梯,關鍵的是找一個最大的非零子式。然後這個子式以外的,就是「自由基」。「自由基」只有1個,就令其等於1。

基礎解系一個。「自由基」有兩個,就令其分別等於(1,0)和(0,1),然後解出基礎解系兩個解。以此類推。

像你這題,例如第一個,2,3列顯然構成非零子式了。那麼令x1=1,解出x2=0,x3=0,不就得出基礎解系(1,0,0)了嗎?

線性代數的基礎解系是什麼,該怎樣求啊

7樓:是你找到了我

基礎解系

:齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。

1、對係數矩陣a進行初等行變換,將其化為行階梯形矩陣;

2、若r(a)=r=n(未知量的個數),則原方程組僅有零解,即x=0,求解結束;

若r(a)=r3、繼續將係數矩陣a化為行最簡形矩陣,並寫出同解方程組;

4、選取合適的自由未知量,並取相應的基本向量組,代入同解方程組,得到原方程組的基礎解系

8樓:不是苦瓜是什麼

線性方程組

的解集合的極大線性無關組就是這個方程組的基礎解系。先求解方程組 解出所有解向量,然後求出其極大線性無關組就好。

一般求基礎解系先把係數矩陣進行初等變換成下三角矩陣,然後得出秩,確定自由變數,得到基礎解系,基礎解系是相對於齊次(等號右邊為0)的.

例如:x1+x2+x3+7x4=2,x1+2x2+x3+2x4=3,5x1+8x2+5x3+20x4=13,2x1+5x2+2x3-x4=7,其增廣矩陣為

1 1 1 7 2

1 2 1 2 3

5 8 5 20 13

2 5 2 -1 7

通過初等變換為:

1 1 1 7 2

0 1 0 -5 1

0 0 0 0 0

0 0 0 0 0

秩為2,未知數個數為4,自由變數個數為4-2=2

設自由變數為x3、x4,取(x3,x4)=(1,0)和(0,1)代入方程組(取最終變換得到的比較簡單)可得:(x1,x2)=(-1,0)和(-12,5)

於是基礎解系的基:(-1,0,1,0)t和(-12,5,0,1)t.

線性代數通解和基礎解系的區別如下:

1、定義不同,對於一個微分方程而言,其解往往不止一個,而是有一組,可以表示這一組中所有解的統一形式,稱為通解。基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。

2、求法不同,基礎解系不是唯一的,因個人計算時對自由未知量的取法而異,但不同的基礎解系之間必定對應著某種線性關係。對於非齊次方程而言,任一個非齊次方程的特解加上一個齊次方程的通解,就可以得到非齊次方程的通解。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

9樓:是嘛

齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。基礎解系不是唯一的,因個人計算時對自由未知量的取法而異。

不同的基礎解系之間必定對應著某種線性關係。基礎解系是針對有無數多組解的方程而言,若是齊次線性方程組則應是有效方程的個數少於未知數的個數,若非齊次則應是係數矩陣的秩等於增廣矩陣的秩,且都小於未知數的個數。

擴充套件資料

基礎解系和通解的關係:對於一個方程組,有無窮多組的解來說,最基礎的,不用乘係數的那組方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)等均符合方程的解,則係數k為1,2,3,4.....因此(1,2,3)就為方程組的基礎解系。

a是n階實對稱矩陣,假如r(a)=1。則它的特徵值為t1=a11+a22+...+ann,t2=t3=...

tn=0;對應於t1的特徵向量為b1,t2~tn的分別為b2~bn。此時,ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全為零。

由於ax=0ax=0*b,b為a的特徵向量,對應一個特徵值的特徵向量寫成通解的形式是乘上ki並加到一起。這是基礎解系和通解的關係。

10樓:末你要

基礎解系是 (9, 1, -1)^t或 (1, 0, 4)^t。

解:方程組 同解變形為4x1-x2-x3 = 0

即 x3 = 4x1-x2

取 x1 = 0, x2 = 1, 得基礎解系 (9, 1, -1)^t

取 x1 = 1, x2 = 0, 得基礎解系 (1, 0, 4)^t

求「基礎解系」,需要將帶求矩陣變為「階梯形矩陣」(變換方法為「初等行變換」)。

基礎解系是ax = 0的n-r(a)個線性無關的解向量, 方程組的任一解都可表示為基礎解系的線性組合。

11樓:匿名使用者

基礎解系針對齊次線性方程組ax = 0而言的.

當r(a)時, 方程組存在基礎解系.

基礎解系是ax = 0的n-r(a)個線性無關的解向量, 方程組的任一解都可表示為基礎解系的線性組合.

具體求法按下圖例子 超了!

12樓:匿名使用者

基礎解系是ax=0的所有解的極大無關組。也是ax=0解空間的基。基礎解系不唯一,基礎解系中向量的個數等於未知數個數減去a的秩。要注意只有ax=0才有基礎解系而ax=b不存在基礎解系

13樓:孤舟獨泛

所謂基礎解系,就是ax=0的解向量組的一個極大無關組。

齊次方程組ax=0恆有解(必有零解)非零解時,根據齊次方程組解的性質,解向量的任意線性組合仍是該齊次方程組的解。設η1,η2,…,ηt是ax=0的基礎解系,即(1)它們是都是ax=0的解(2)它們線性無關(3)ax=0的任一解都可有它們線性表出。

線性代數求解,線性代數求解(步驟)

殘陽如血 線性代數求解釋。大學生都懂,一看這個理論他就明白,都會解釋,都會做。 盤沉 其實關於這種線性代數的題的話,你還是要把基礎學好。 線性代數詳解的話,那你鼻子通過他那代數解方程式的那種方式你才能解開,這是一個非常好的一個解邦城市的一種式子。 滿目柔光是你 這個姐的話你就先代入x求一個的值,最後...

線性代數應用題,線性代數應用題求解

星夜騎士 你好 既然排列組合你會的話 你是否不會那些命令函式啊?1 combntns x,m 列舉出從n個元素中取出m個元素的組合。其中,x是含有n個元素的向量。2 perms x 給出向量x的所有排列。3 nchoosek n,m 從n各元素中取m個元素的所有組合數。nchoosek x,m 從向...

線性代數題目第10題求解答,線性代數矩陣題目求解,如下圖,7 8 9 10 11題,望大神解答。

zzllrr小樂 1 假設存在不全為0的係數ki,使得 k0 k1 1 k2 2 k n r n r 0 則a k0 k1 1 k2 2 k n r n r 0 零向量 即k0a k1a 1 k2a 2 k n ra n r 0 也即k0b 0 0 0 0 則k0b 0 因為b不為0,則k0 0 代...