線性代數特徵值和特徵向量,線性代數中怎樣求特徵值和特徵向量?

時間 2021-08-11 17:39:52

1樓:仨x不等於四

特徵向量和特徵值的定義就是:矩陣a乘以一個非零向量a,相當於一個數λ乘以這個向量a,於是這個數λ就是特徵值(能代表矩陣a特點的數值),向量a就是特徵向量。寫成式子就是

aa=λa

那你想想,移項過去以後aa-λa=0,要把a用乘法分配律提出來,就變成(a-λe)a=0(e是單位矩陣)

那你現在的目的是要求λ和a,如果運用條件呢?首先這是個以a為未知數的齊次方程組(右邊是0),a≠0,根據解的判別定理,齊次方程組有一個不為0的解,比如它的係數行列式為0才行,所以

|a-λe|=0,就是你問的第一個式子。

然後就算這個行列式的值來解出λ。行列式的結果是一個關於λ的3次方程,3次方程必然有3個解(這是代數基本定理),如果出現平方項,就看成兩個一樣的解,或者把這個特徵值稱為「二重的」(代數重數為2)。

我上面說的這些教材上肯定會寫,樓主再去複習一下。有什麼不懂的可以追問。

2樓:匿名使用者

裡面就是矩陣的加減

a是一個矩陣,γe的單位矩陣的γ倍,當然就是這個結果了

特徵值就是這麼求的,以便滿足 ak=γk

3樓:匿名使用者

在已知方陣的情況下,先求特徵值,再求對應的特徵向量,這是沒錯的

線性代數中怎樣求特徵值和特徵向量?

4樓:曾經的一隻豬

特徵值與特徵向量是線性代數的核心也是難點,在機器學習演算法中應用十分廣泛。要求線性代數中的特徵值和特徵向量,就要先弄清楚定義:

設 a 是 n 階矩陣,如果存在一個數 λ 及非零的 n 維列向量 α ,使得aα=λαaα=λα成立,則稱 λ 是矩陣 a 的一個特徵值,稱非零向量 α 是矩陣 a 屬於特徵值 λ 的一個特徵向量。

觀察這個定義可以發現,特徵值是一個數,特徵向量是一個列向量,一個矩陣乘以一個向量就等於一個數乘以一個向量。

線性代數,求特徵值和特徵向量

5樓:dear豆小姐

||特徵值  λ = -2, 3, 3,特徵向量

: (1    0    -1)^t、(3     0     2)^t。

解:|λe-a| =

|λ-1       -1          -3|

| 0         λ-3         0|

|-2         -2           λ|

|λe-a| = (λ-3)*

|λ-1        -3|

|-2           λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值  λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3      -1      -3]

[ 0      -5       0]

[-2      -2      -2]

行初等變換為

[ 1       1         1]

[ 0       1         0]

[ 0       2         0]

行初等變換為

[ 1       0         1]

[ 0       1         0]

[ 0       0         0]

得特徵向量 (1    0    -1)^t。

對於重特徵值 λ = 3, λe-a =

[ 2      -1      -3]

[ 0       0       0]

[-2      -2      3]

行初等變換為

[ 2      -1      -3]

[ 0      -3       0]

[ 0       0       0]

行初等變換為

[ 2       0      -3]

[ 0       1       0]

[ 0       0       0]

得特徵向量 (3     0     2)^t。

答:特徵值  λ = -2, 3, 3,特徵向量: (1    0    -1)^t、(3     0     2)^t。

擴充套件資料

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用

設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。

非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量,簡稱a的特徵向量或a的本徵向量。

矩陣的特徵向量是矩陣理論上的重要概念之一,它有著廣泛的應用。數學上,線性變換的特徵向量(本徵向量)是一個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。

6樓:匿名使用者

|a-λ

e| =

1-λ 2 3

2 1-λ 3

3 3 6-λ

r1-r2

-1-λ 1+λ 0

2 1-λ 3

3 3 6-λ

c2+c1

-1-λ 0 0

2 3-λ 3

3 6 6-λ

= (-1-λ)[(3-λ)(6-λ)-18]= (-1-λ)[λ^2-9λ]

= λ(9-λ)(1+λ)

所以a的特徵值為 0, 9, -1

ax = 0 的基礎解係為: a1 = (1,1,-1)'

所以,a的屬於特徵值0的全部特徵向量為: c1(1,1,-1)', c1為非零常數.

(a-9e)x = 0 的基礎解係為: a2 = (1,1,2)'

所以,a的屬於特徵值9的全部特徵向量為: c2(1,1,2)', c2為非零常數.

(a+e)x = 0 的基礎解係為: a3 = (1,-1,0)'

所以,a的屬於特徵值-1的全部特徵向量為: c3(1,-1,0)', c3為非零常數.

7樓:匿名使用者

你好,滿意請採納哦!

|a-λe|=

2-λ 3 2

1 8-λ 2

-2 -14 -3-λ

= -(λ-1)(λ-3)^2=0

解得特徵值為1,3,3

1對應的特徵向量:

(a-e)x=0

係數矩陣:

1 3 2

1 7 2

-2 -14 -4

初等行變換結果是:

1 0 2

0 1 0

0 0 0

所以特徵向量是[-2 0 1]^t

3對應的特徵向量:

(a-3e)x=0

係數矩陣:

-1 3 2

1 5 2

-2 -14 -6

初等行變換結果是:

1 1 0

0 2 1

0 0 0

所以特徵向量是[1 -1 2]^t

8樓:

一個基本結論:

矩陣所有特徵值的和為主對角線上元素的和。

所以,兩個特徵值之和為

1+3=4

9樓:匿名使用者

λ||λ|λe-a| =

|λ-1 -1 -3|| 0 λ-3 0||-2 -2 λ||λe-a| = (λ-3)*

|λ-1 -3|

|-2 λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值 λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3 -1 -3]

[ 0 -5 0]

[-2 -2 -2]

行初等變換為

[ 1 1 1][ 0 1 0][ 0 2 0]行初等變換為

[ 1 0 1][ 0 1 0][ 0 0 0]得特徵向量 (1 0 -1)^t對於重特徵值 λ = 3, λe-a =

[ 2 -1 -3]

[ 0 0 0]

[-2 -2 3]

行初等變換為

[ 2 -1 -3]

[ 0 -3 0]

[ 0 0 0]

行初等變換為

[ 2 0 -3]

[ 0 1 0]

[ 0 0 0]

得特徵向量 (3 0 2)^t.

10樓:豆賢靜

題目給的條件是a的秩為2,所以在特徵值為-2的時候,最多隻有兩個特徵向量。

11樓:小樂笑了

|λi-a| =

λ-1    -1    -3

0    λ-3    0

-2    -2    λ

= (λ-1)(λ-3)λ-2×3×(λ-3) = (λ-3)(λ+2)(λ-3) = 0

解得λ=-2,3(兩重)

12樓:匿名使用者

求 λ-2 2 0

2 λ-1 2

0 2 λ

行列式值為0的解。

得特徵值為 -2,1,4。

對λ^3-3λ^2-6λ+8進行因式分解。

一般求特徵值時的因式分解步驟都不難, 上式容易看出1是它的一個零點,提取出λ-1,得到

λ^3-3λ^2-6λ+8=(λ-1)(λ^2-2λ-8)

13樓:匿名使用者

一個線性方程組的基礎解系是這樣的一個解向量組:

14樓:徐臨祥

1.首先讓我們來了解一下特徵值和特徵向量的定義,如下:

2.特徵子空間基本定義,如下:

3.特徵多項式的定義,如下:

15樓:蒯懿靖迎夏

此題中,由於是實對稱矩陣,特徵向量互相垂直,所以η·η1=0,所以

x2+x3=0。在滿足該條件的基礎上任取互相垂直的向量選作η2、η3(只要滿足該條件,就屬於

λ=1對應特徵向量的解空間),即可。

對矩陣a,方程

ax=λx(x待求向量,λ待求標量),的解x稱為a的特徵向量,

λ為對應的特徵值,特徵值特徵向量問題是線性代數學習、研究的一個重要模組。

一般求解辦法:

第一步,求解方程:det(a-λe)=0

得特徵值

λ第二步,求解方程:(a-λe)x=0

得對應特徵向量

x特徵值特徵向量問題的應用比較廣泛:

線性代數領域——化簡矩陣(即矩陣對角化、二次型標準化等),計算矩陣級數

高等數學領域——解線性常係數微分方程組、判斷非線性微分方程組在奇點處的穩定性

物理——矩陣量子力學

……以上僅僅是筆者接觸到的一些應用。

16樓:洛德業劇溫

線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。

數學上,線性變換的特徵向量(本徵向量)是一個非退化的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。一個線性變換通常可以由其特徵值和特徵向量完全描述。

特徵空間是相同特徵值的特徵向量的集合。

設a為n階矩陣,根據關係式ax=λx,可寫出(λe-a)x=0,繼而寫出特徵多項式|λe-a|=0,可求出矩陣a有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λie-a)x=0,所求解向量x就是對應的特徵值λi的特徵向量。

線性代數題目,向量空間方面的,線性代數,向量空間相關問題

d 例 a 是1維空間,a 是2維空間,a 是3維空間,但向量都是3維的。 我猜測是選a.首先我沒有聽過 向量的維數 dimension of a vector 這種說法,我猜測你是指向量的長度 length 也就是說,x x 1 x n 中的那個正整數 n 從而這個問題可以轉述為 給定 域 k,如...

怎麼判斷特徵值是否線性無關,特徵值的個數怎麼判斷

1全部組成一個矩陣,求秩,矩陣的秩 向量個數時無關,矩陣的秩 向量個數時相關 如果向量維數等於向量個數,把這些向量構成一個行列式,如果值非0則線性無關。如果向量維數大於向量個數,需要取所有的向量維數等於個數的縮短組,計算行列式,如果存在非0則線性無關。另外還可以施密特正交化,如果在某一步後得到0向量...

求矩陣的特徵值和特徵向量,知道特徵值和特徵向量怎麼求矩陣

一個人郭芮 當然就是按照第三列 第三列只有一個2 非零 提取出來,去掉所在的第三行,第三列 得到一個二階行列式 與其相乘 再計算得到後面的即可 知道特徵值和特徵向量怎麼求矩陣 例 已知矩陣a,有特徵值 1及其對應一個特徵向量 1,特徵值 2及其對應一個特徵向量 2,求矩陣a。a 1 1 1,a 2 ...