1樓:王
一、注重對基本概念的理解與把握,正確熟練運用基本方法及基本運算。
線性代數的概念很多,重要的有:
代數餘子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關與線性無關,極大線性無關組,基礎解系與通解,解的結構與解空間,特徵值與特徵向量,相似與相似對角化,二次型的標準形與規範形,正定,合同變換與合同矩陣。
我們不僅要準確把握住概念的內涵,也要注意相關概念之間的區別與聯絡。
線性代數中運演算法則多,應整理清楚不要混淆,基本運算與基本方法要過關,重要的有:
行列式(數字型、字母型)的計算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關組,線性相關的判定或求引數,求基礎解系,求非齊次線性方程組的通解,求特徵值與特徵向量(定義法,特徵多項式基礎解系法),判斷與求相似對角矩陣,用正交變換化實對稱矩陣為對角矩陣(亦即用正交變換化二次型為標準形)。
2樓:普海的故事
線性代數主要研究了三種物件:矩陣、方程組和向量.這三種物件的理論是密切相關的,大部分問題在這三種理論中都有等價說法.
因此,熟練地從一種理論的敘述轉移到另一種去,是學習線性代數時應養成的一種重要習慣和素質.如果說與實際計算結合最多的是矩陣的觀點,那麼向量的觀點則著眼於從整體性和結構性考慮問題,因而可以更深刻、更透徹地揭示線性代數中各種問題的內在聯絡和本質屬性.由此可見,只要掌握矩陣、方程組和向量的內在聯絡,遇到問題就能左右逢源,舉一反三,化難為易.
一、注重對基本概念的理解與把握,正確熟練運用基本方法及基本運算。
求解一道線性代數題(行列式,求詳細步驟)
3樓:匿名使用者
線性代數來
行列式的
計算源技巧: 1.利用行列式定義直接計算例1 計算行列式 解 dn中不為零的項用一般形式表示為 該項列標排列的逆序數t(n-1 n-2?1n)等於,故 2.利用行列式的性質計算例2 一個n階行列式的元素滿足 則稱dn為反對稱行列式,證明:
奇數階反對稱行列式為零. 證明:由 知,即 故行列式dn可表示為 由行列式的性質 當n為奇數時,得dn =-dn,因而得dn = 0.。
3.化為三角形行列式若能把一個行列式經過適當變換化為三角形,其結果為行列式主對角線上元素的乘積。因此化三角形是行列式計算中的一個重要方法。
4樓:匿名使用者
答案為(b-a)(c-a)(d-a)(c-b)(d-b)(d-c),詳細過程
抄如圖。
其中利用的到兩個公式
x²-y²=(x-y)(x+y)
x³-y³=(x-y)(x²+xy+y²)抱歉 **最後一步算錯了, 應該是d-c
5樓:我66的啊
答案是(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)
線性代數問題,如下圖中的上,下三角行列式的答案是怎麼得出來的?請給詳解,謝謝!
6樓:
你用行列式的定義把它,除了對角線上元素的乘積之外,其餘的每一個乘式中都會含有一個乘數0,所以三角矩陣行列式的值等於其對角線元素的乘積
這道線性代數題怎麼寫啊,線性代數,這道題怎麼寫呢?
豌豆凹凸秀 證明 假設命題不對,即 1,2,3,1 2線性相關,則由線性相關的定義,存在不全為0的a b c d使得a 1 b 2 c 3 d 1 2 0若d 0,則a 1 b 2 c 3 0,則 1,2,3線性相關,與題設中 1,2,3線性無關矛盾 故 2 a d 1 b d 2 c d 3 1由...
線性代數這道填空題的思路, 線性代數 這道填空題的思路
請教大家一道線性代數填空題,只說思路就可以了。非常感謝!第四題哦.請教大家一道線性代數填空題,只說思路就可以了 俎賓實 如果三線共點,假設交點是 x0,y0 那麼 alpha1,alpha2,alpha3 x0,y0,1 t 0 把 x0,y0,1 t看成齊次線性方程組 alpha1,alpha2,...
第三題,線性代數
b 5 3 1 1 02 1 1 0 1b 1 1 3 1 22 1 1 0 1b 1 1 3 1 20 1 7 2 5b 1 0 4 1 30 1 7 2 5b 1 0 4 1 30 1 7 2 5p 1 3 2 5 p a 1 0 4 0 1 7 分析 逆矩陣定義 若n階矩陣a,b滿足ab ba...