1樓:帥醉巧
證明:[(e+ab)^-1a]^t (解釋:^t表示轉置,樓主懂得,證明矩陣對稱的思路:就是證明轉置矩陣是否等於矩陣本身)
另外,題中:a+b都是n階對稱矩陣。不對吧,應該是a和b都是n階對稱矩陣
[(e+ab)^-1a]^t
=a^t[(e+ab)^-1]^t
=a[(e+ab)^t]^-1
=a(e+b^ta^t)^-1
=a(e+ba)^-1
=[(a^-1)^-1](e+ba)^-1=[(e+ba)a^-1]^-1
=(a^-1+b)^-1
而(e+ab)^-1a
=(e+ab)^-1(a^-1)^-1
=[a^-1(e+ab)]^-1
=(a^-1+b)^-1
∴(e+ab)^-1a=[(e+ab)^-1a]^t∴(e+ab)^-1a也是對稱矩陣
希望對你有幫助,望採納,謝謝~
2樓:
(e+ab)的逆矩陣乘a等於 a加上b的逆 (e+ab)的逆矩陣乘a的轉秩等於a加上b的逆 所以 為對稱矩陣
已知a和b都是n階矩陣,且e-ab是可逆矩陣,證明e-ba可逆
3樓:墨汁諾
反證,若e-ba不可逆,則存在x不為0,使(e-ba)x=0(方和有非零解)->x=bax
則(e-ab)ax=ax-abax=ax-ax=0
也即(e-ab)y=0有非零解(其中y=ax),與題專設矛盾,所以e-ba可逆,但屬這種證法不能求其逆的具體表示。
例如:假設e-ba不可逆,則(e-ba)x = 0 有非零解,則可得 x=bax。
又 (e-ab)ax = ax - abax = ax-ax = 0,即ax為(e-ab)y = 0的一個非零解,由此可證
因為e-ab可逆,則存在可逆陣c使得c(e-ab)=e,則c-cab=e
左乘b右乘a,有bca-bcaba=ba
有bca=(e+bca)ba推出(bca+e)-e=(e+bca)ba,整理有(bca+e)(e-ba)=e,根所定義知e-ba可逆
擴充套件資料;
設σ是線性空間v的一個線性變換,稱:
ker(σ)=
為σ的核;稱:
im(σ) =σ(v) =
為σ的像(或值域),ker(σ)與σ(v)都是v的子空間,且:
dim ker(σ) + dimσ(v) =n.
證明:容易看出ker(σ)是v的子空間。證明:σ(v)也是v的子空間。
4樓:匿名使用者
你好!你說的對,α≠0不能得出aα≠0,這個證法不對。下圖是正確的做法,結論也更一般。經濟數學團隊幫你解答,請及時採納。謝謝!
5樓:匿名使用者
aα=0的話,baα也就等於0,baα=α=0,與α不等於0矛盾,所以aα肯定不等於0
6樓:假日霓裳
兄弟,你很仔細啊,這個問題我也發現了,網上答案真是參差不齊。
設a,b都是n階矩陣,ab=a+b,證明:(1)a-e,b-e都可逆;(2)ab=ba
7樓:匿名使用者
(1)a-e,b-e是n階方陣,b-e
(a-e)(b-e)=ab-a-b+e=e因此,a-e,b-e互為逆矩陣
(2)根據(1)的結論有
(b-e)(a-e)=e
於是ba=a+b得證
8樓:第一名
證明:(1)因為(a-e)(b-e)=ab-(a+b)+e=e,所以a-e,b-e都可版
逆.(2)由(1)知權
e=(a?e)(b?e)
=(b?e)(a?e)
=ba?(a+b)+e
所以ab=a+b=ba
若a,b都是n階方陣,且e+ab可逆,則e+ba也可逆,且(e+ba)-1=e-b(e+ab)-1a
9樓:手機使用者
證明:因為a,b都是n階方陣,且e+ab可逆,e+ba也可逆.而要證明的是
(e+ba)(e-b(e+ab)-1a)=e+ba-(e+ba)b(e+ab)-1a
變化得,
=e+ba-(b+bab)(e+ab)-1a=e+ba-b(e+ab)(e+ab)-1a=e+ba-ba
=e所以
(e+ba)-1=e-b(e+ab)-1a.所以原等式成立.
設n階矩陣a和b滿足條件a+b=ab.(1)證明a-e為可逆矩陣(其中e是n階單位矩陣);(2)已知b=1-30210002,
10樓:我是一個麻瓜啊
解答過程如下:
單位矩陣:在矩陣的乘法中,有一種矩陣起著特殊的作用,如同數的乘法中的1,這種矩陣被稱為單位矩陣。它是個方陣,從左上角到右下角的對角線(稱為主對角線)上的元素均為1。
除此以外全都為0。
根據單位矩陣的特點,任何矩陣與單位矩陣相乘都等於本身,而且單位矩陣因此獨特性在高等數學中也有廣泛應用。
擴充套件資料矩陣a為n階方陣,若存在n階矩陣b,使得矩陣a、b的乘積為單位陣,則稱a為可逆陣,b為a的逆矩陣。若方陣的逆陣存在,則稱為可逆矩陣或非奇異矩陣,且其逆矩陣唯一。
11樓:樂觀的新幾次哇
(1)∵(a-e)(b-e)=ab-a-b+e∴(a-e)(b-e)=e
∴a-e可逆,並且逆矩陣為b-e
(2)∵a+b=ab
∴a(b-e)=b
這樣後面應該會了吧
(3) 由(a-e)(b-e)=(b-e)(a-e)=e
∴ab-a-b+e=ba-b-a+e
∴ab=ba
12樓:手機使用者
(1)由a+b=ab,加項後因式分解得有ab-b-a+e=(a-e)(b-e)=e,
所以a-e可逆,且(a-e)-1=b-e;
(2)由(1)得,(b-e)-1=a-e,即a=e+(b-e)-1.
利用分塊矩陣求逆的法則:a0
0b)-1
=a-10
0b-1,
有(b-e)-1=
0-302
0000
1]-1=
a001
]-1=a
-1001
利用2階矩陣快速求逆法得a-1
=012
-130,
故(b-e)-1=01
20-13
0000
1,故a=e+(b-e)-1=
1120
-1310
002.
設A B都是n階對稱矩陣,證明AB為對稱矩陣的充分必要條件是
邴澄邈狂霽 證明 先證明a是 n階對稱矩陣充分必要條件是a a t 設a aij n n a t bij n naij bji 1 i,j n 當a是對稱矩陣時,aij aji n n 當然有a a t 當a a t時,aij aji,即a是對稱矩陣已知a b 是n階對稱矩陣時,a a t b b ...
線性代數選擇題 設A,B為n階矩陣,A且B與相似,則A lAl lBl B A與B有相同的特徵值和特徵向量
納喇亮鬱畫 你好!a對。a pbp 1 其中p可逆。a p b p 1 p b 1 p b b.特徵向量不一定不同。c。這意味著a b d。如 a b 1,1 0,1 只有一個線性無關的特徵向量。打字不易,採納哦! 巴運旺貴戊 a,b相似即存在可逆矩陣p,使p 1 ap b.所以 b p 1 ap ...
設n階矩陣A與矩陣B相似,證明A與B有相同的特徵多樣式
證 因為a與b相似,所以存在可逆矩陣p使 p 1ap b所以 b e p 1ap e p 1ap p 1 ep p 1 a e p p 1 a e p a e 即a與b有相同的特徵多項式 題 若n階矩陣a與b相似,證明它們的特徵矩陣相似解 以下用e表示單位矩陣 么陣 用e x表示矩陣x的逆陣。題意即...