設a為n階方陣,且a 2,a為a的伴隨矩陣,則a

時間 2021-08-11 17:43:33

1樓:給小球梳毛

|a*|=2^(n-1)。線性代數的學術地位:

1、線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。

2、線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。

3、隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以被計算出來,線性代數正是解決這些問題的有力工具。

4、線性代數的計算方法也是計算數學裡一個很重要的內容。

2樓:匿名使用者

經濟數學團隊為你解答。滿意請及**價。謝謝!

3樓:陽光的

設b為a的伴隨矩陣,e為單位陣,

ab=|a|e,|a||b|=|a|^n,

|b|=|a|^(n-1)

1,設a為三階矩陣,|a|=2,a*為a的伴隨矩陣,則行列式|(3a^-1)-2a*|=____

4樓:匿名使用者

^-1/2,-9。

解析:1、|(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2

2、d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4=5-3-7-4=-9

5樓:末你要

^^1、(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2

2、 d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4=5-3-7-4=-9

矩陣a乘矩陣b,得矩陣c,方法是a的第一行元素分別對應乘以b的第一列元素各元素,相加得c11,a的第一行元素對應乘以b的第二行個元素,相加得c12,以此類推,c的第二行元素為a的第二行元素按上面方法與b相乘所得結果,以此類推。

如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差一個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。

6樓:匿名使用者

|^^1. |(3a^-1)-2a*|=|3a^(-1)-2|a|a^(-1)|=|-a(-1)|=(-1)^4*1/|a|=1/2

2.d=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1*4*(-1)^(3+4)

=-5-6-4=-15

覺得好請採納 祝學習進步

7樓:匿名使用者

|^(1) |(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2

(2) d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4

=5-3-7-4=-9

設a是三階矩陣,|a|=2,a的伴隨矩陣是a*,則|2a*|=()

8樓:子不語望長安

^④|解題步驟:

①伴隨矩陣a*有aa*=│a│e兩邊求行列式的值│a││a*│=││a│e│

②│a*│*2=│a│^3=8

③│a*│=4

④|2a*|=2^3*4=32

如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差一個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。

伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。

9樓:demon陌

^伴隨矩陣a*有aa*=│a│e兩邊求行列式的值│a││a*│=││a│e│

即有│a*│*2=│a│^3=8

所以│a*│=4

|2a*|=2^3*4=32

如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差一個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。

伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。

10樓:寂寞的楓葉

||2a*|=32。具體解答過程如下。

解:矩陣a的逆矩陣為a-1,伴隨矩陣為a*。那麼a*=|a|a-1=2a-1,|a|*|a-1|=1則|2a*|=|2*2a-1|=|4a-1|,而矩陣a是三階矩陣,那麼

|2a*|=|4a-1|

=4^3*|a-1|

=4^3*1/|a|

=64/2=32

設a為三階矩陣,a*為a的伴隨矩陣,且|a|=2,求 (如下圖)

11樓:高數線代程式設計狂

可逆矩陣,有公式a*=laia^-1=2a^-1,帶入原式的i-3/2*a^-1l=(-3/2)^3*la^-1l

12樓:匿名使用者

這裡主要考察伴隨矩陣與逆矩陣之間的關係

如果可逆,則

這樣原式就可以化簡為 |(2a)^(-1)-2a^(-1)|=(-1.5)^3*|a^(-1)|=-27/16

13樓:茹翊神諭者

先化簡一下,

然後根據推論1來做,

詳情如圖所示,有任何疑惑,歡迎追問

設a為三階方陣,行列式|a|=2,a*是a的伴隨矩陣,則|(a/4)^-1+a*|=? 求過程,**等```

14樓:匿名使用者

解: a* = |a|a^-1 = 2a^-1(a/4)^-1 = 4a^-1

所以|(a/4)^-1+a*|

= |4a^-1+2a^-1|

= |6a^-1|

= 6^3 |a^-1|

= 6^3/2

= 108

設a是n階矩陣,a*為a的伴隨矩陣 證明|a*|=|a|^(n-1)

15樓:demon陌

利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。具體回答如圖:

伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。

16樓:匿名使用者

如圖可以利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。

設a為n階可逆方陣則,設A為n階可逆方陣,則 A A

兔老大米奇 a 1 a a a a 1 a a a 1 a 1 a 1 a a n 2 a。aa a e,當a可逆時,a a a 1,從而 a a a 1 1 n a 1 1 a 1 1 n 1 a a 1 1 n 1a a為n階可逆方陣,1 i aa 1 a a 1 a 1 1 a 根據 a 1 ...

證明 設n階方陣a滿足a 2 a,證明a的特徵值為1或

設 a為矩陣a的特徵值,x為對應的非零特徵向量。則有 ax ax.ax ax a 2x a ax a ax aax a ax a 2x,a 2 a x 0,因x為非零向量,所以。0 a 2 a a a 1 a 0或1. 感覺上面兩位說的都有問題。數學還是嚴謹點好。第一位顯然是錯的,又沒告訴你a是2階...

設A為三階方陣,且A 4,則A 是多少

243。a 1 1 a 3,又因為 a a a 1 1 3 a 1,所以 3a 4a 1 a 1 4a 1 3a 1 3 4 a 1 3 4 3 3 5 243。除了對角法之外,三階行列式的計算還可以應用行列式的性質進行計算,行列式的值為任一行 或列 元素乘以代數餘子式然後作和。行列式的值等於任一行...