一道大學定積分計算題,辛苦了,求詳細步驟

時間 2021-10-15 00:04:51

1樓:吉祿學閣

這是變限的不定積分極限的應用,用到兩類知識,即:

變限不定積分求導數法則。

極限洛必達公式。

具體步驟如下:

lim(x→0)[∫(0,x)sint^2dt]^2/∫(0,x)t^2sint^3dt

=lim(x→0)2[∫(0,x)sint^2dt]*sinx^2/x^2sinx^3

=lim(x→0)2[∫(0,x)sint^2dt]/sinx^3=lim(x→0)2[∫(0,x)sint^2dt]/x^3(無窮小等價代換)

=lim(x→0)2sinx^2/3x^2(再次洛必達法則)= 2/3.

2樓:匿名使用者

lim(x->0) [∫(0->x) sin(t^2) dt ]^2 / ∫(0->x) t^2.sin(t^3) dt

(0/0 分子分母分別求導)

=lim(x->0) 2sin(x^2).∫(0->x) sin(t^2) dt / [ x^2.sin(x^3)]

=lim(x->0) 2x^2.∫(0->x) sin(t^2) dt / [ x^5]

=2lim(x->0) ∫(0->x) sin(t^2) dt / ( x^3) (0/0 分子分母分別求導)

=2lim(x->0) sin(x^2) / ( 3x^2)

=2lim(x->0) (x^2) / ( 3x^2)

=2/3

如何學習大學高等數學?

3樓:匿名使用者

摒棄中學的學習方法,儘快適應現有的學習環境;

注意中學數學和《高等數學》的區別與聯絡;

中學數學課程的中心是從具體數學到概念化數學的轉變。高等數學首先要做的是幫助學生髮展函式概念——變數間關係的表述方式。

儘快適應《高等數學》課程的教學特點;

堅持做到,課前預習,課上聽講,課後複習,認真完成作業,課後對所學的知識進行歸納總結,加深對所學內容的理解,從而也就掌握了所學的知識,就不難學好高等數學這門課。

掌握正確的學習方法:

(1)要勤學、善思、多練。

(2)狠抓基礎,循序漸進。

(3)歸類小結,從厚到薄。

(4)精讀一本參考書。

(5)注意學習效率。

(6)掌握學習規律。

關於 《高等數學》的知識延展:

簡介:

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

工科、理科研究生考試的基礎科目。

在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。

至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。

初等數學研究的是常量與勻變數,高等數學研究的是非勻變數。高等數學(它是幾門課程的總稱)是理、工科院校一門重要的基礎學科,也是非數學專業理工科專業學生的必修數學課,也是其它某些專業的必修課。

作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。

所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。

4樓:暖暖炊煙裊裊

一、把握三個環節,提高學習效率

(2)認真上課:注意老師的講解方法和思路,其分析問題和解決問題的過程,記好課堂筆記,聽課是一個全身心投入——聽、記、思相結合的過程。

(3)課後複習:當天必須回憶一下老師講的內容,看看自己記得多少;然後開啟筆記、教材,完善筆記,溝通聯絡;最後完成作業。

二、在記憶的基礎上理解,在完成作業中深化,在比較中構築知識結構的框架。

三、 按"新=陳+差異"思路理解深化學習知識。

四、"三人行,則必有我師",參加老師的輔導,向同學請教並相互討論。

五、 掌握處理數學問題的基本方法:

(1)分割求和法;

(2)以直求曲法;

(3)恆等變形法:

①等量加減法;

②乘除因子法;

③積分求導法;

④三角代換法;

⑤數形結合法;

⑥關係迭代法;

⑦遞推公式法;

⑧相互溝通法;

⑨前後夾擊法;

⑩反思求證法;

⑪建構函式法;

⑫逐步分解法。

六、 階段複習與全面鞏固相結合。

大學裡面高等數學都學的什麼啊

5樓:薔祀

在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。

理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:

線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。

微積分的基本概念和內容包括微分學和積分學。

微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

從廣義上說,數學分析包括微積分、函式論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。

數理統計是伴隨著概率論的發展而發展起來的一個數學分支,研究如何有效的收集、整理和分析受隨機因素影響的資料,並對所考慮的問題作出推斷或**,為採取某種決策和行動提供依據或建議。

概率論是研究隨機現象數量規律的數學分支。隨機現象是相對於決定性現象而言的。在一定條件下必然發生某一結果的現象稱為決定性現象。

例如在標準大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現象則是指在基本條件不變的情況下,每一次試驗或觀察前,不能肯定會出現哪種結果,呈現出偶然性。例如,擲一硬幣,可能出現正面或反面。

隨機現象的實現和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為一個基本事件,一個或一組基本事件統稱隨機事件,或簡稱事件。典型的隨機試驗有擲骰子、扔硬幣、抽撲克牌以及輪盤遊戲等。

線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題。

因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

擴充套件資料

19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。

原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取複數值的復變數和向量、張量形式的。

以及各種幾何量、代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(概率)空間——範疇和隨機過程。描述變數間依賴關係的概念由函式發展到泛函、變換以至於函子。

與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。

按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就是說,幾何是將各種空間形式置於變換之下來來研究的。

無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。

數學中的無窮以潛無窮和實無窮兩種形式出現。

在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函式的極限。

數學分析以它為基礎,建立了刻畫函式區域性和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。

另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究物件本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。這是數學中的實無窮。

能夠處理這類無窮集合,是數學水平與能力提高的表現。

為了處理這類無窮集合,數學中引進了各種結構,如代數結構、序結構和拓撲結構。另外還有一種度量結構,如抽象空間中的範數、距離和測度等,它使得個體之間的關係定量化、數字化,成為數學的定性描述和定量計算兩方面的橋樑。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。

數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。

在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。

參考資料

6樓:於昌斌的

主要學的是函式極限、微積分、級數、向量、不定積分。下面是目錄:

一、上冊:

1函式與極限。

2導數與微分。

3導數的應用,。

4不定積分。

5定積分。

6微分方程。

7多元函式微分法。

8二重積分

二、下冊:

1行列式。

2矩陣。

3向量。

4線性方程組。

5相似矩陣及二次型。

6概率。

7隨機變數及分佈。

8隨機變數的數字特徵。

9大數定理及中心極限定理。

高等數學是大學必修課之一,分上下冊,一般在大一每個學期學一冊。此書為田玉芳編著,2023年出版,本書可作為高等學校理工類各專業,尤其是工科電子資訊類各專業本科生的高等數學教材或教學參考書,也可供學生自學使用。

一道數學計算題目,一道數學計算題

施鑲菱 根據立方差公式a b a b a ab b 可得 x 3x 9 x 27 6 9 x x 1 6 2x 1 x 3 6 x 9 x 1 6 2x x 3 x 9 6 x 9 x 1 6 2x 1 x 3 x 1 6 2x 3 x 2x 6 x三次方 27分之x 3x 9 9 x 分之6 6 ...

一道數學計算題,請教一道數學計算題

1 根號內10 2 10,根號內 10 2 2 10 2 100,根號內 10 3 2 10 3 1000,以下也同樣道理 2 3次根號內10 3 10,3次根號內10 6 10 3 100,3次根號內10 9 10 3 1000,由1可以看出,將10換成6或1 3,規律主要看根號和上面的2,4,6...

一道初三物理計算題,初三物理一道計算題

1.113 108 5 千米 30 58 27 28 210s 2.其它的方法 目前中國的鐵軌,是12.5米一段的,所以,可以聽車輪和鐵軌碰撞的聲音,咚咚聲 每響一聲,說明火車又向前走了米,數出一分鐘內車輪響了多少次,就可以算出了。解 s 113 108 5km 5000mt 210s 把資料代入公...