一元二次方程(步驟),一元二次方程配方法怎麼配方?

時間 2022-01-14 05:55:03

1樓:匿名使用者

直接開平方法,配方法,公式法,因式分解法

因式分解法分為:提取公因式法,公式法,十字相乘法,分組分解法,主元法,換元法,待定係數法

用配方法解一元二次方程的步驟是什麼?

2樓:葬花的饕餮

配方法將一元二次方程配成(x+m)^2=n的形式,再利用直接開平方法求解的方法。

①把原方程化為一般形式;

②方程兩邊同除以二次項係數,使二次項係數為1,並把常數項移到方程右邊;

③方程兩邊同時加上一次項係數一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數;

⑤進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。

(2)配方法的理論依據是完全平方公式a^2+b^2+2ab=(a+b)^2;

(3)配方法的關鍵是:先將一元二次方程的二次項係數化為1,然後在方程兩邊同時加上一次項係數一半的平方。

擴充套件資料

開平方法

(4)注意:

①等號左邊是一個數的平方的形式而等號右邊是一個常數。

②降次的實質是由一個一元二次方程轉化為兩個一元一次方程。

③方法是根據平方根的意義開平方。

3樓:韜啊韜

將一元二次方程配成

①把原方程化為一般形式;

②方程兩邊同除以二次項係數,使二次項係數為1,並把常數項移到方程右邊;

③方程兩邊同時加上一次項係數一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數;

⑤進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。

(2)配方法的理論依據是完全平方公式

(3)配方法的關鍵是:先將一元二次方程的二次項係數化為1,然後在方程兩邊同時加上一次項係數一半的平方。

配方法解一元二次方程例項:

4樓:坐等作業的葬禮

解題步驟:

(1)二次項係數:化為1

(2)移項:把方程x2+bx+c=0的常數項c移到方程另一側,得方程x2+bx=-c

(3)配方:方程兩邊同加上一次項係數一半的平方,方程左邊成為完全平方式

(4)開方:方程兩邊同時開平方,目的是為了降次,得到一元一次方程。

(5)得解:解一元一次方程,得出原方程的解【例】解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,x²+2×3/2x=-1

x²+2×3/2x+(3/2)²=-1+(3/2)²(x+3/2)²=5/4

x+3/2=±√5/2

即x1,2=(-3±√5)/2.

5樓:老羅搞怪

配方法解一元二次方程,一定要熟練掌握

6樓:數學輔導大師

九年級數學:配方法解一元二次方程,一定要熟練掌握運用

7樓:匿名使用者

1、提出二次項的係數

2、把一次項係數除以2,然後加上商的平方

3、把提出係數的二次內項,一次容項(包括係數),一次項係數一半的平方用括號括起來

4、括號外再減一個一次項係數一半的平方,加上原來的常數項5、括號內就是一個二項式的平方了

6、把常數移到等號的另一邊

7、一下就只等號兩邊開方,記住常數開方的前面要寫上正負號

8樓:匿名使用者

(1)化二次項係為1

(2)移項

(3)配方

(4)兩邊開根號

9樓:匿名使用者

求東方神起fans制的《豆花之歌》樂譜或簡譜

怎樣用c語言編一個解一元二次方程的程式(可以看步驟)!

10樓:王者之劍

#include

#include

int main(void)

else if (delta ==0) //delta等於0,方程有兩個相同的解

else //delta小於0時,方程沒有解return 0;}

11樓:鄰冰

#include

#include

int main(void)

else if(d = 0)

else

哪有無關內容?最後一句return那個是返回值好吧

12樓:三盤人

可以用二分程式設計序,一般的書上都有的,你查查

一元二次方程配方法怎麼配方?

13樓:假面

用配方法解一元二次方程的一般步驟:

1、把原方程化為的形式;

2、將常數項移到方程的右邊;方程兩邊同時除以二次項的係數,將二次項係數化為1;

3、方程兩邊同時加上一次項係數一半的平方;

4、再把方程左邊配成一個完全平方式,右邊化為一個常數;

5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。

14樓:火星

1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式   2.

移項: 常數項移到等式右邊   3.係數化1:

二次項係數化為1   4.配方: 等號左右兩邊同時加上一次項係數一半的平方   5.

求解: 用直接開平方法求解 整理 (即可得到原方程的根)   代數式表示方法:注(^2是平方的意思.

)   ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)   例:解方程2x^2+4=6x   1. 2x^2-6x+4=0   2.

x^2-3x+2=0   3. x^2-3x=-2   4. x^2-3x+2.

25=0.25 (+2.25:

加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等)   5. (x-1.5)^2=0.

25 (a^2+2b+1=0 即 (a+1)^2=0)   6. x-1.5=±0.

5   7. x1=2   x2=1 (一元二次方程通常有兩個解,x1 x2)

編輯本段二次函式配方法技巧

y=ax&sup要的一項,往往在解決方程,不等式,函式中需用,下面詳細說明:   首先,明確的是配方法就是將關於兩個數(或代數式,但這兩一定是平方式),寫成(a+b)平方的形式或(a-b)平方的形式: 將(a+b)平方的得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必須要有a^2,2ab,b^2 則選定你要配的物件後(就是a^2和b^2,這就是核心,一定要有這兩個物件,否則無法使用配方公式),就進行新增和去增,例如:

原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解:

a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了, 附註:a或b前若有係數,則看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)

15樓:匿名使用者

配方法:用配方法解方程ax2+bx+c=0 (a≠0)先將常數c移到方程右邊:ax2+bx=-c將二次項係數化為1:x2+x=-

方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2

方程左邊成為一個完全平方式:(x+ )2=當b2-4ac≥0時,x+ =±

∴x=(這就是求根公式)

例2.用配方法解方程 3x2-4x-2=0解:將常數項移到方程右邊 3x2-4x=2將二次項係數化為1:x2-x=

方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2配方:(x-)2=

直接開平方得:x-=±

∴x=∴原方程的解為x1=,x2=

一元二次方程求根公式詳細的推導過程

16樓:戲遠巴乙

^ax^2+bx+c=0.

(a≠0,^2表示平方)等式兩邊都除以a,得,x^2+bx/a+c/a=0,

移項,得:

x^2+bx/a=-c/a,

方程兩邊都加上一次項係數b/a的一半的平方,即方程兩邊都加上b^2/4a^2,(配方)得

x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a.

x+b/2a=±[√(b^2-4ac)]/2a.

(√表示根號)得:

x=[-b±√(b^2-4ac)]/2a.

17樓:對他說

一元二次方程的根公式是由配方法推導來的,那麼由ax^2+bx+c(一元二次方程的基本形式)推導根公式的詳細過程如下,

1、ax^2+bx+c=0(a≠0,^2表示平方),等式兩邊都除以a,得x^2+bx/a+c/a=0,

2、移項得x^2+bx/a=-c/a,方程兩邊都加上一次項係數b/a的一半的平方,即方程兩邊都加上b^2/4a^2,

3、配方得 x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即 (x+b/2a)^2=(b^2-4ac)/4a,

4、開根後得x+b/2a=±[√(b^2-4ac)]/2a (√表示根號),最終可得x=[-b±√(b^2-4ac)]/2a。

一、一元二次方程求根公式

1、2、公式描述:一元二次方程形式:ax2+bx+c=0(a≠0,且a,b,c是常數)。

3、滿足條件:

(1)是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。

(2)只含有一個未知數。

(3)未知數項的最高次數是2。

18樓:昂菊苗淑

^令ax^2+bx+c=0.

(a≠0,^2表示平方)

等式兩邊各乘以4a,得,

4a^2x^2+4abx+4ac=0,

即(2ax)^2+2×2abx+4ac=0.

等式左邊加b^2再減去b^2,則,

(2ax)^2+2×2abx+b^2-b^2+4ac=0.

即(2ax+b)^2=b^2-4ac.

故2ax+b=±√(b^2-4ac).

(√表示根號)

得:x=[-b±√(b^2-4ac)]/2a.

19樓:匿名使用者

一元二次方程解法:

一:直接開平方法

形如(x+a)^2=b,當b大於或等於0時,x+a=正負根號b,x=-a加減根號b;當b小於0時。方程無實數根

二:配方法

1.二次項係數化為1

2.移項,左邊為二次項和一次項,右邊為常數項

3.配方,兩邊都加上一次項係數一半的平方,化成(x=a)^2=b的形式

4.利用直接開平方法求出方程的解

三:公式法

現將方程整理成:ax^2+bx+c=0的一般形式。再將abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大於或等於0)即可

四:因式分解法

如果一元二次方程ax^2+bx+c=0中等號左邊的代數式容易分解,那麼優先選用因式分解法

以上都是我自己找我初三的輔導書然後自己打上去的,打完現在是19點40了,希望可以幫得到你。你說的推導跟公式的過程,可以多做幾道一元二次方程,就可以尋得公式的規律了

二次函式與一元二次方程的關係,一元二次方程和二次函式關係怎麼講

假設二次函式為 f x ax 2 bx c 一元二次方程為 ax 2 bx c 0 那麼方程的解就是函式曲線與x軸的交點橫座標。如果函式曲線與x軸沒有交點,則方程沒有實根 如果只有一個交點,則方程有一個重根 如果有兩個交點,則方程有兩個實根。 張家主任 一個二次函式影象如果與x 軸有兩個交點,那麼這...

一元二次方程

1 3 x 2 2 2 x 3 x 2 2 x 2 0 3 x 2 2 x 2 0 3x 4 x 2 0 x 4 3或x 2 2 x 2x 1 0 x 2x 1 2 x 1 2 x 1 根號2 x 1 根號2 x 1 根號2 3 x 1 2x 1 x 1 2 3x x 1 2x 1 x 1 2 3x...

一元二次方程

5 x x 3 x x 解 5x 5x 3x 3x 0 2x 8x 0 x 4x 0 x x 4 0 x 0 x 4 自己是這麼做的.a b a b 2ab a b a b a b b加減根號下 b 2 4ac 2a5x 5x 3x 3x 2x 8x 0 x 4x 0 x x 4 0 x1 0,x2...