一元二次方程式解法,一元二次方程的全部詳細解法,舉例,原理

時間 2021-08-11 17:38:38

1樓:業餘棋迷80後

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:   1、直接開平方法;2、配方法;3、公式法;4、因式分解法。

  1、直接開平方法:   直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)^2;=n (n≥0)的 方程,其解為x=±√n+m .

  例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11   分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)^2;,右邊=11>0,所以此方程也可用直接開平方法解。   (1)解:

(3x+1)^2=7   ∴(3x+1)^2=7   ∴3x+1=±√7(注意不要丟解符號)   ∴x= ﹙﹣1±√7﹚/3   ∴原方程的解為x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3   (2)解:

9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11   ∴x=﹙ 4±√11﹚/3   ∴原方程的解為x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3   2.配方法:

用配方法解方程ax^2+bx+c=0 (a≠0)   先將常數c移到方程右邊:ax^2+bx=-c   將二次項係數化為1:x^2+b/ax=- c/a   方程兩邊分別加上一次項係數的一半的平方:

x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左邊成為一個完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   當b²-4ac≥0時,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(這就是求根公式)   例2.用配方法解方程 3x²-4x-2=0   解:將常數項移到方程右邊 3x²-4x=2   將二次項係數化為1:

x²-﹙4/3﹚x= ?   方程兩邊都加上一次項係數一半的平方:x²-﹙4/3﹚x+( 4/6)²=?

+(4/6 )²   配方:(x-4/6)²= ? +(4/6 )²   直接開平方得:

x-4/6=± √[? +(4/6 )² ]   ∴x= 4/6± √[? +(4/6 )² ]   ∴原方程的解為x?

=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .   3.公式法:

把一元二次方程化成一般形式,然後計算判別式△=b²-4ac的值,當b²-4ac≥0時,把各項係數a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   例3.用公式法解方程 2x²-8x=-5   解:將方程化為一般形式:

2x²-8x+5=0   ∴a=2, b=-8, c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解為x?=,x?= .

  4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。

  例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)   (1)解:(x+3)(x-6)=-8 化簡整理得   x2-3x-10=0 (方程左邊為二次三項式,右邊為零)   (x-5)(x+2)=0 (方程左邊分解因式)   ∴x-5=0或x+2=0 (轉化成兩個一元一次方程)   ∴x1=5,x2=-2是原方程的解。

  (2)解:2x2+3x=0   x(2x+3)=0 (用提公因式法將方程左邊分解因式)   ∴x=0或2x+3=0 (轉化成兩個一元一次方程)   ∴x1=0,x2=-是原方程的解。   注意:

有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。   (3)解:6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)   ∴2x-5=0或3x+10=0   ∴x1=, x2=- 是原方程的解。

  (4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。   小結:

  一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項係數化為正數。   直接開平方法是最基本的方法。   公式法和配方法是最重要的方法。

公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。   配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法   解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。

(三種重要的數學方法:換元法,配方法,待定係數法)。

2樓:殘雪凝輝灬

一般是三種。第一種他就是直接用公式,第二種就是因此分解,第三種就是用座標軸

3樓:獅子座有有

120次方程的解法,一元二次方程的話就會有很多解法第一個就是那種一式分解還有那種就是公式法。

4樓:李樹的戀愛

一元二次方程很簡單的,對於特殊的方程可以通過配方法進行求解,或者是通過因式分解進行調節,對於那種一般的可以通過求根公式求解。

5樓:側身西望長嘆息

這是解方程的方法,你可以在網上搜尋這個課程學習就可以

6樓:求寄波

一元二次方程式的解法,有代入法和消元法。

一元二次方程的全部詳細解法,舉例,原理.........

7樓:坐看雲起雨落

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:

1、直接開平方法;

2、配方法;

3、公式法;

4、因式分解法。

1、直接開平方法:直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)^2;=n (n≥0)的 方程,其解為x=±√n+m .

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先將常數c移到方程右邊:ax^2+bx=-c

將二次項係數化為1:x^2+b/ax=- c/a

方程左邊成為一個完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²

當b²-4ac≥0時,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²

∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a (這就是求根公式)

3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b²-4ac的值,當b²-4ac≥0時,把各項係數a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。

4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。

小結: 一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項係數化為正數。

直接開平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。

配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:

換元法,配方法,待定係數法)。

只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項係數;bx叫作一次項,b是一次項係數;c叫作常數項。

一元二次方程成立必須同時滿足三個條件:

①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。

②只含有一個未知數;

③未知數項的最高次數是2。

8樓:千分一曉生

因式分解法:

x²-2x-15=0,

(x-5)(x+3)=0

∴x1=5, x2=-3

(原理:若a*b=0,則a、b必有一個是0)直接開平方法:

9x²=1

x²=1/9,

x1=1/3,x2=-1/3

(原理:平方根的求法)

配方法:

x²-2x=15

x²-2x+1=15+1

(x-1)²=16,

x-1=4或x-1=-4,

∴x1=5,x2=-3

(原理:直接開平方法)

公式法:x=[- b土根號(b²-4ac)]/2x²-2x-15=0

a=1,b=-2,c=-15,

b²-4ac=64>0

x=(2土根號64)/2

∴x1=5, x2=-3

(原理:配方法)

一元二次方程詳細的解法,越相信越好。

9樓:曾經的約定

首先當a不等於0時方程:ax^2+bx+c=0才是一元二次方程1.公式法:

δ=b²-4ac,δ<0時方程無解,δ≥0時x=【-b±根號下(b²-4ac)】÷2a(δ=0時x只有一個)2.配方法:可將方程化為[x-(-b/2a)]²=(b²-4ac)/4a²

可解出:x=【-b±根號下(b²-4ac)】÷2a(公式法就是由此得出的)

3.直接開平方法與配方法相似

4.因式分解法:核心當然是因式分解了看一下這個方程(ax+c)(bx+d)=0,得abx²+(ad+bc)+cd=0與一元二次方程ax^2+bx+c=0對比得a=ab,b=ad+bc,c=cd。

所謂因式分解也只不過是找到a,b,c,d這四個數而已

舉幾個例子吧

例1: x²-5x+6=0

解:(x-2)(x-3)=0,x1=2,x2=3例2: 3x²-17x+10=0

解: (3x-2)(x-5)=0,x1=2/3,x2=5因式分解法又名十字相乘法原因看下面就知道了abx²+(ad+bc)+cd=0axc

↖↗↙↘

bxd (a,b,c,d不一定都是正數)解方程時因選擇適當的方法

下面幾個練習題可以試試

1.x²-6x+9=0

2.4x²+4x+1=0

3.x²-12x+35=0

4.x²-x-6=0

5.4x²+12x+9=0

6.3x²-13x+12=0

二次函式與一元二次方程的關係,一元二次方程和二次函式關係怎麼講

假設二次函式為 f x ax 2 bx c 一元二次方程為 ax 2 bx c 0 那麼方程的解就是函式曲線與x軸的交點橫座標。如果函式曲線與x軸沒有交點,則方程沒有實根 如果只有一個交點,則方程有一個重根 如果有兩個交點,則方程有兩個實根。 張家主任 一個二次函式影象如果與x 軸有兩個交點,那麼這...

一元二次方程

1 3 x 2 2 2 x 3 x 2 2 x 2 0 3 x 2 2 x 2 0 3x 4 x 2 0 x 4 3或x 2 2 x 2x 1 0 x 2x 1 2 x 1 2 x 1 根號2 x 1 根號2 x 1 根號2 3 x 1 2x 1 x 1 2 3x x 1 2x 1 x 1 2 3x...

一元二次方程

5 x x 3 x x 解 5x 5x 3x 3x 0 2x 8x 0 x 4x 0 x x 4 0 x 0 x 4 自己是這麼做的.a b a b 2ab a b a b a b b加減根號下 b 2 4ac 2a5x 5x 3x 3x 2x 8x 0 x 4x 0 x x 4 0 x1 0,x2...