近世代數問題

時間 2021-09-09 05:23:13

1樓:鬼王囈語

證明:做子群h在g上的群作用:對任何一個 ,h*x= 。

從而|h*a| =|h:stab(a)|,這就表明全體形如hah^-1 的元素的個數必然是整除|h| 。

2樓:

1、證:

x^3 = e,則x為1階元素(即e本身)或3階元素。

若x = e,則這樣的x唯一。

若為g的3階元素,則知x ≠ x^2,且二者均為g的3階元素,從而g的3階元素都成對出現。

再注意到g中元素生成的迴圈群互不相交,則若x ≠ y均為g的三階元,x^2 ≠ y,則它們屬於不同的迴圈群,即x^n ≠ y(任意n)。這保證了成對出現的3階元素互不相交。

綜上,g中使x^3 = e的元素個數為奇數(1個e加上偶數個3階元)。

2、存在。有點像四元數中i、j、k的運算,對集合g = ,定義乘法ea = a,eb = b,ec = c,a^2 = b^2 = c^2 = e^2 = e,ab = c,bc = a,ac = b,乘法可交換。則易驗證g是交接群,子群

、、覆蓋g。

3、aut(q) = 。

證:不難看出,若f是q的同態,則

f(0) = f(0) + f(0),從而f(0) = 0。

記f(1) = q,則由數學歸納法易見對自然數f(n) = n q。

f(-n) + f(n) = f(0) = 0,從而f(-n) = - f(n) = - nq。

又歸納知 n f(x) = f(n x),從而f(x) = f(n x) / n。(x是任意有理數)即對有理數m / n,有

f(m / n) = f(m) / n。

於是f((m/n) * y) = (m/n) * f(y),對上式記x = m / n,並取定y = 1,則f(x) = x f(1) = x q。

由f是單同態,則ker f = ,從而q不為0。

容易驗證當q為有理數時,f 還是滿同態,從而是同構。

綜上,q的自同構就只有f(x) = q x(q不等於0)。

近世代數的幾個問題謝謝了,離散數學 近世代數部分的5個問題,高手進!

1 證 x 3 e,則x為1階元素 即e本身 或3階元素。若x e,則這樣的x唯一。若為g的3階元素,則知x x 2,且二者均為g的3階元素,從而g的3階元素都成對出現。再注意到g中元素生成的迴圈群互不相交,則若x y均為g的三階元,x 2 y,則它們屬於不同的迴圈群,即x n y 任意n 這保證了...

大學應用數學,近世代數環的真子域定義

若r是一個環,e是r的真子。環,同時有 u e e 即e是一個域 則e是r的真子域。近世代數里整環和域有區別嗎 整環和域又區bai別嗎?有什麼du區別?你自己zhi找本教材比較一下定dao義有什麼區別就行了內,這兩者只有單向。容的包含關係,即域一定是整環但反之不然 考慮整數環 為什麼對於域的自同構單...

線性代數概念問題,線性代數概念問題

xi di d di 0 因為第i列全為0 所以xi 0 d 0 從多個角度都可以考慮。1 從線性相關性考慮 設a 1,2,n ax 0,就是x1 1 x2 2 x3 3 xn n 0 如果 a 0,就是說明a可逆,r a n,也就是說明a的列向量線性無關。根據線性無關的定義知,x1 1 x2 2 ...