1樓:秋日傳奇
矩陣的跡是指線性代數中矩陣的主對角線上各個元素的總和;矩陣的跡擁有的性質為:矩陣的跡是所有對角元的和,矩陣的跡也是所有特徵值的和,若矩陣有n階,則矩陣的跡就等於矩陣的特徵值的總和,也即矩陣的主對角線元素的總和。
一、設有n階矩陣a,那麼矩陣a的跡(用tr(a)表示)就等於a的特徵值的總和,也即矩陣a的主對角線元素的總和。
1.跡是所有對角元的和
2.跡是所有特徵值的和
3.某些時候也利用tr(ab)=tr(ba)來求跡
4.tr(ma+nb)=m tr(a)+n tr(b)
二、奇異值分解(singular value decomposition )
奇異值分解非常有用,對於矩陣a(p*q),存在u(p*p),v(q*q),b(p*q)(由對角陣與增廣行或列組成),滿足a = u*b*v
u和v中分別是a的奇異向量,而b是a的奇異值。aa'的特徵向量組成u,特徵值組成b'b,a'a的特徵向量組成v,特徵值(與aa'相同)組成bb'。因此,奇異值分解和特徵值問題緊密聯絡。
如果a是復矩陣,b中的奇異值仍然是實數。
svd提供了一些關於a的資訊,例如非零奇異值的數目(b的階數)和a的階數相同,一旦階數確定,那麼u的前k列構成了a的列向量空間的正交基。
三、在數值分析中,由於數值計算誤差,測量誤差,噪聲以及病態矩陣,零奇異值通常顯示為很小的數目。
將一個矩陣分解為比較簡單或者性質比較熟悉的矩陣之組合,方便討論和計算。由於矩陣的特徵值和特徵向量在化矩陣為對角形的問題中佔有特殊位置, 因此矩陣的特徵值分解。儘管矩陣的特徵值具有非常好的性質,但是並不是總能正確地表示矩陣的「大小」。
矩陣的奇異值和按奇異值分解是矩陣理論和應用中十分重要的內容,已成為多變數反饋控制系統最重要最基本的分析工具之一,奇異值實際上是複數標量絕對值概念的推廣, 表示了反饋控制系統的輸出/輸入增益,能反映控制系統的特性。
2樓:鐸傅香贏鵑
矩陣的跡,就是矩陣主對角線上元素之和,英文叫trace(跡)。
跡的最重要性質:一個矩陣的跡,和該矩陣的特徵值之和,相等。
3樓:北梓維樓嬋
矩陣的跡是矩陣特徵值的和,即矩陣主對角線元素的和。
性質:1.
跡是所有對角元的和
2.跡是所有特徵值的和
3.trace(ab)=trace(ba)
什麼叫矩陣的跡?
4樓:
矩陣的跡
trace 方陣對角元素之和
singular value decompostion
奇異值分解非常有用,對於矩陣a(p*q),存在u(p*p),v(q*q),b(p*q)(由對角陣與增廣行或列組成),滿足a = u*b*v
u和v中分別是a的奇異向量,而b中是a的奇異值。aa'的特徵向量組成u,特徵值組成b'b,a'a的特徵向量組成v,特徵值(與aa'相同)組成bb'。因此,奇異值分解和特徵值問題緊密聯絡。
如果a是復矩陣,b中的奇異值仍然是實數。
svd提供了一些關於a的資訊,例如非零奇異值的數目(b的階數)和a的階數相同,一旦階數確定,那麼u的前k列構成了a的列向量空間的正交基。
在數值分析中,由於數值計算誤差,測量誤差,噪聲以及病態矩陣,零奇異值通常顯示為很小的數目。
將一個矩陣分解為比較簡單或者性質比較熟悉的矩陣之組合,方便討論和計算。由於矩陣的特徵值和特徵向量在化矩陣為對角形的問題中佔有特殊位置, 因此矩陣的特徵值分解。。。儘管矩陣的特徵值具有非常好的性質,但是並不是總能正確地表示矩陣的「大小」。
矩陣的奇異值和按奇異值分解是矩陣理論和應用中十分重要的內容,已成為多變數反饋控制系統最重要最基本的分析工具之一,奇異值實際上是複數標量絕對值概念的推廣, 表示了反饋控制系統的輸出/輸入增益,能反映控制系統的特性。《魯棒控制。。傾斜轉彎導彈》
昨天看了一個網頁,http://www.uwlax.
edu/faculty/will/svd/,知道了奇異值分解就是把矩陣a分解成hanger,stretcher,aligner的三重積。從幾何意義上講矩陣a乘以幾何圖形(用數值序列x,y代表),相當於對幾何圖形先扭轉,再拉伸,再扭轉。從這裡也知道,「正交」的概念特別有用。
一對最簡單的正交基(orthogonal basis,perpframe)是p1 = [cos(s) sin(s)],p2 = [-sin(s) cos(s)],它可以用於幾何變換。
5樓:俞和首懷薇
矩陣的跡,就是矩陣主對角線上元素之和,英文叫trace(跡)。
跡的最重要性質:一個矩陣的跡,和該矩陣的特徵值之和,相等。
矩陣的跡是什麼?有什麼性質?
6樓:於昌斌的
例子:設有矩陣:
它的跡是:
擴充套件資料:
性質一、設有n階矩陣a,那麼矩陣a的跡(用tr(a)表示)就等於a的特徵值的總和,也即矩陣a的主對角線元素的總和。
1.跡是所有對角元的和
2.跡是所有特徵值的和
3.某些時候也利用tr(ab)=tr(ba)來求跡
4.tr(ma+nb)=m tr(a)+n tr(b)
二、奇異值分解(singular value decomposition )
奇異值分解非常有用,對於矩陣a(p*q),存在u(p*p),v(q*q),b(p*q)(由對角陣與增廣行或列組成),滿足a = u*b*v
u和v中分別是a的奇異向量,而b是a的奇異值。aa'的特徵向量組成u,特徵值組成b'b,a'a的特徵向量組成v,特徵值(與aa'相同)組成bb'。因此,奇異值分解和特徵值問題緊密聯絡。
如果a是復矩陣,b中的奇異值仍然是實數。
svd提供了一些關於a的資訊,例如非零奇異值的數目(b的階數)和a的階數相同,一旦階數確定,那麼u的前k列構成了a的列向量空間的正交基。
三、在數值分析中,由於數值計算誤差,測量誤差,噪聲以及病態矩陣,零奇異值通常顯示為很小的數目。
將一個矩陣分解為比較簡單或者性質比較熟悉的矩陣之組合,方便討論和計算。由於矩陣的特徵值和特徵向量在化矩陣為對角形的問題中佔有特殊位置, 因此矩陣的特徵值分解。儘管矩陣的特徵值具有非常好的性質,但是並不是總能正確地表示矩陣的「大小」。
矩陣的奇異值和按奇異值分解是矩陣理論和應用中十分重要的內容,已成為多變數反饋控制系統最重要最基本的分析工具之一,奇異值實際上是複數標量絕對值概念的推廣, 表示了反饋控制系統的輸出/輸入增益,能反映控制系統的特性。《魯棒控制.傾斜轉彎導彈》
7樓:匿名使用者
矩陣的跡是矩陣特徵值的和,即矩陣主對角線元素的和。
性質:1. 跡是所有對角元的和
2. 跡是所有特徵值的和
3. trace(ab)=trace(ba)
8樓:匿名使用者
矩陣的跡:主對角線(左上至右下的那一條)上所有元素之和。
9樓:生邁尚欣美
矩陣的跡
就是n階
矩陣主對角線
上的幾個
數字元素之和,這幾個數字之和等於
矩陣特徵值之和~
矩陣的跡有什麼作用?
10樓:匿名使用者
兩個矩陣相似時會用到 這兩個矩陣的跡相等,由此可以確定一些帶有有引數的矩陣
11樓:佼戈羊元旋
一般是用來判斷是否為嚴格對角佔優或者非嚴格對角佔優。嚴格對角佔優矩陣在很多地方都有不錯的用途,比如高斯迭代或者雅閣比迭代對於嚴格對角佔優矩陣必收斂。
矩陣的跡有什麼作用?具體應用在什麼地方呢?
12樓:粘子萇朝旭
兩個矩陣相似時會用到
這兩個矩陣的跡相等,由此可以確定一些帶有有引數的矩陣
矩陣的跡是什麼意思?
13樓:光舒俞清婉
矩陣的跡,就是矩陣主對角線上元素之和,英文叫trace(跡)。
跡的最重要性質:一個矩陣的跡,和該矩陣的特徵值之和,相等。
伴隨矩陣有哪些性質,伴隨矩陣有什麼性質行列?
根據伴隨矩陣的元素的定義 每個元素等於原矩陣去掉該元素所在的行與列後得到的行列式的值乘以 1 的i j次方的代數餘子式。有 1 當r a n時,由於公式r ab r a r ab r b 並且r aa r i n,則,伴隨的秩為n 2 當r a n 1時,r aa a i 0,加上公式r a r b...
什麼叫正交矩陣,什麼是正定矩陣,正交矩陣
兔老大米奇 正交矩陣是方塊矩陣,行向量和列向量皆為正交的單位向量。行向量皆為正交的單位向量,任意兩行正交就是兩行點乘結果為0,而因為是單位向量,所以任意行點乘自己結果為1。對於3x3正交矩陣,每行是一個3維向量,兩個3維向量正交的幾何意義就是這兩個向量相互垂直。所以3x3正交矩陣的三行可以理解為一個...
房屋性質有哪些,什麼叫房屋性質?
鑽誠投資擔保 房產證上的 房屋性質 通常情況下都應該是 商品房 房改房 存量房 集資房 微利房 平價房 解困房 再上市房 廉租住房 花園式住房 經濟適用住房 公寓式住宅 等等,寫 其他 是通常以外的一些特殊的性質,要想知道具體情況,還需要到發證機關查詢底檔瞭解詳細原因和具體性質。房產證,購房者通過交...