0上有二階連續導數,且對任意x0有fxk,其中k0,為一常數,f 0 0證明 f x 在

時間 2021-08-11 17:04:08

1樓:匿名使用者

由x>=0有f''(x)>=k,其中k>0可知f‘(x)是一次函式 可寫成f’(x)=kx+b 其中k大於0

那麼f(x)=k*x的平方+bx+c k大於0 是一二次函式開口向上,由f(0) <0可知頂點在 f(x)在(0,+∞)上有且只有一個零點

2樓:匿名使用者

證明:對任意的t>=0,有f''(t)>=k>0,兩邊對t從0積分到x(x>0),得到變上限積分

xf'(x)-f'(0)≥∫ kdt=kx,於是,對於任意的x>0有f'(x)≥kx+f'(0)成立。

0也即,對於任意的s>0有f'(s)≥ks+f'(0)成立。兩邊在對s從0積分到x(x>0),得到變上限積分

xf(x)-f(0)≥∫ ks+f'(0)=1/2*kx^2+f'(0)*x

0於是,對於任意的x>0有f(x)≥1/2*kx^2+f'(0)*x+f(0)成立。

當x->+∞時,1/2*kx^2>0且為比f'(0)*x+f(0)更高階的∞,於是此時有f(x)->+∞。因f(0)<0,由中值定理可知,必存在一正根x0>0,滿足f(x0)=0。也即f(x)在(0,+∞)上必有零點。

現證其唯一性。不妨設除正根x0>0滿足f(x0)=0,還有一正根x1>x0>0也滿足f(x1)=0。於是根據中值定理,必存在x0=k>0,故f'(x)單增,則在x∈(0,x2)上恆有f'(x)<0,則f(x)在x∈(0,x2)上單減,由f(0)<0知在x∈(0,x2)上恆有f(x)

這與f(x0)=0矛盾。唯一性得證。

設函式f(x)在(0,+∞)上具有二階導數,且f″(x)>0,令un=f(n),則下列結論正確的是(  )a.

3樓:faith丶

∵f″(x)>0

∴f(x)在(0,+∞)的圖形是凹的

∴?x0∈(0,+∞),f(x)在(0,x0)單調遞減,在(x0,+∞)單調遞增(也有可能x0≤0)

∴(1)選項d:若u1<u2,即un=f(n)處於f(x)單調遞增的區間,

此時,f(n)是無界的

∴un發散

∴選項d正確.

(2)選項a:若u1>u2,

此時,不能判斷un=f(n)是否有界,因而也就不能判斷un是否收斂

例如:取f(x)=(x-3)2,滿足題目條件f(1)>f(2),但f(n)=(n-3)2發散,所以排除a;

選項b:取f(x)=x-2,滿足f(1)>f(2),但f(n)=n

?2=1

n收斂,所以排除b;

(3)選項c:取f(x)=x2,滿足f(1)<f(2),但f(n)=n2發散,所以排除d.

故選:d

設函式f(x)具有連續的二階導數,且f'(0)=0,limf''(x)/|x|=1,則f(0)是f(x)的極小值

4樓:demon陌

|imf''(x)/|x|=1表明x=0附近(即某鄰域),f''(x)/|x|>0, f''(x)>0, f'(x)遞增, x<0, f'(x)0, f'(x)>f'(0)=0,所f(0)極值。

極值是一個函式的極大值或極小值。如果一個函式在一點的一個鄰域內處處都有確定的值,而以該點處的值為最大(小),這函式在該點處的值就是一個極大(小)值。

如果它比鄰域內其他各點處的函式值都大(小),它就是一個嚴格極大(小)。該點就相應地稱為一個極值點或嚴格極值點。

5樓:匿名使用者

先說解法:

關於其它一些東西:

(1) 確實有 f''(0) = 0

(2) 一般來講(不針對這道題),當 f‘’(0) = 0 時,即可能是極小值,也可能是極大值,也可能不是極值。比如:2-3階導數都是0,但4階導數連續且大於0,則它仍然是極小值(證法與這道題類似,都是泰勒)。

例如函式:f(x) = x^4

(3) 這道題比較特殊,f''(0) = 0,仍能推出在一個鄰域內,f''(x) > 0,成為是極小值的關鍵。

設f x 在上有二階連續導數,證明

千振華希綾 用分部積分法.0,1 x 1 x f x dx u x 1 x v f x u 1 2x v f x x 1 x f x 0,1 0,1 1 2x f x dx再設u1 1 2xv1 f x u1 2 v1 f x 0 1 2x f x 0,1 2 0,1 f x dx f 1 f 0 ...

設z xf y x 2yf x y ,f具有二階連續導數且

毅忘無跡 過程有點多 我就說下大概的步驟吧 1.求完偏導後方程兩邊同時對y積分,得 y a f y a f y a 2f a y y 3 a 3 c 2.令y a x,上式兩邊同時除以 x 2後對x積分,得f x x 2f 1 x x 2 2 c x a 3.令x 1 x,代入a後,得方程b,ab聯...

高分求解關於二階連續偏導數問題的解法,有追加

關於那個古怪的符號怎麼打我們就不說了,呵呵,就用6表示嘛,大家知道意思就行了。其實那個 平方 很簡單的,估計您好像時間緊沒有看到教材在某一個角落中是說到這個問題了的,舉個例子,6z 6x表示函式z對其中的一個自變數x求導,這個時候把y看做常數就行了,想必方法你也很熟悉,那麼6 z 6y 就表示的是函...