y的二階導數等於y的一階導數加x求通解

時間 2021-08-11 17:04:08

1樓:假面

具體回答如下:y''+y'=x

特徵方程

r^2+r=0

r=-1,r=0

因此齊次通解是

y=c1+c2e^(-x)

觀察得特解是

y=1/2x^2-x

因此通解是

y=c1+c2e^(-x)+1/2x^2-x導數的意義:不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。

然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。

2樓:吉祿學閣

y''=y'+x

y''-y'=x

3樓:匿名使用者

y" = y' + x (0)

y"- y'= x (1)

y"- y'= 0 (2) 特徵方程:s^2-s = 0 s1=0 s2=1 (2)的通解:

y(x) = c1 + c2e^(x) (3) 設(1)的特解:y1(x) = ax^2+bx (試探法)

代入(1): 2a-2ax-b=x (2a-b)=(1+2a)x a = -1/2 b = -1

特解:y1 = -0.5x^2 - x (4)

(1)的通解為(1)的特解和(2)的通解之和:

y(x) = c1+c2e^(x)-0.5x^2-x (5)

其中c1、c2由初始條件確定。

y二階導數等於y的一階導數加上x 求解題過程

4樓:匿名使用者

^^y" = y' + x (0)

y"- y'= x (1)

y"- y'= 0 (2) 特徵方程:s^2-s = 0 s1=0 s2=1 (2)的通

y(x) = c1 + c2e^(x) (3) 設(1)的特y1(x) = ax^2+bx (試探法)

代入(1):2a-2ax-b=x (2a-b)=(1+2a)x a = -1/2 b = -1

y1 = -0.5x^2 - x (4)

(1)的通解為(內1)的特解容和(2)的通解之和:

y(x) = c1+c2e^(x)-0.5x^2-x (5)

其中c1、c2由初始條件確定.

二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數y‘=f’(x)仍然是x的函式,則y’=f‘(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

5樓:匿名使用者

求微分方

抄程 y''=y'+x 的通解

解:襲齊次方程

y''-y'=0的特徵方程r²-r=r(r-1)=0的根 r₁=0;r₂=1.

因此齊次方程的通解為 y=c₁+c₂e^x.

設方程 y''-y'=x的特解為 y*=ax²+bx【此地注意特徵方程的根 r₂=1與x的指數 1 相等,且原方程缺 y 的一次項】

y*'=2ax+b;y*''=2a;代入原式得:

2a-2ax-b=-2ax+2a-b=x

故 -2a=1,a=-1/2;2a-b=-1-b=0,∴b=-1;

於是得特解 y*=-(1/2)x²-x.

故原方程的通解為 y=c₁+c₂e^x-(1/2)x²-x.

y的二階導函式等於y的一階導函式的平方加一,求解此微分方程通解

橘落淮南常成枳 由題意知y 1 y 2。令y p,則y p dp dx,於是原方程可以寫成 p 1 p 2,所以dp 1 p 2 dx。對等式兩端同時積分得到 arctanp x c1 c1為常數 即p tan x c1 y tan x c1 所以dy tan x c1 dx,再對等式兩端同時積分得...

請問二階導數的用處,請問二階導數的用處

我不是他舅 二階導數就是一階導數的變化率,更高階的導數以此類推。二階導數可以求加速度,判斷函式的凹凸性,求函式影象的拐點,等等。 一階導數是反映原函式的變化趨勢.二階導數是反映一階導數的變化趨勢.n階導數是反映n 1階導數的變化趨勢.另外 二階導數還反映曲線上曲率. 導數是用來描述函式的單調性的函式...

大一微積分二階偏導數,大一微積分二階偏導數怎麼求

混合偏導。二階偏導有對x的二次導 y的二次導 先x導再y導 先y導再x導。最先面第一個式子就是先對y偏導,再對x偏導。就看下圖吧,具體的弄不出來。大一微積分二階偏導數怎麼求 數學之美 偏導數下鏈式法則可得sin 2x 3y 先關於x偏導得cos 2x 3y 2 2cos 2x 3y 再關於y偏導得2...