一階導數等於零一定就是極值嗎?不是如何判斷

時間 2021-08-13 07:14:42

1樓:

求出導數為0的點時 討論在這些點左右取值時導函式是否異號(這點很重要) 若是 則為極值點 否者不是 算極值時將導數為0的點代入原函式 書上有畫圖的過程 。。。。

2樓:中國很不高興

不一定,需要判斷是否導數為零附近的導數是否也為零,不為零,才是極值

3樓:匿名使用者

不一定。反例:y=x^3在x=0處,導數為零,但不是極值點。

判斷方法:

令導數為0,求出x值之後,分別確定:當x小於此值時,f'(x)符號;和當x大於此值時,f'(x)符號;只有當兩者符號為一正一負時,原函式f(x)才會先增後減,或先減後增,才能確定是極值。

(附:判斷符號的方法可以代入一個數去檢驗;或者如果是含引數的式子,可以把f'(x)整理一下看看形式是否是非負的)

希望你能看懂……

一階導等於零,二階導等於零,三階導不等於零那麼這個點是極值點嗎?

一階導數為零的點不一定是極值點,但是如果該點二階導數不為零則一定

4樓:匿名使用者

如果x0點處的二階導數不為0

設二階導數為正

那麼說明f(x)的一階導數在x0點附近是增函式,那麼當x<x0的時候,f'(x)<f'(x0)=0,f(x)是減函式當x>x0的時候,f'(x)>f'(x0)=0,f(x)是增函式所以f(x)在x0點附近是左減右增,x0點是極小值點。

設二階導數為負

那麼說明f(x)的一階導數在x0點附近是減函式,那麼當x<x0的時候,f'(x)>f'(x0)=0,f(x)是增函式當x>x0的時候,f'(x)<f'(x0)=0,f(x)是減函式所以f(x)在x0點附近是左增右減,x0點是極大值點。

所以上面是證明說明,一階導數為0,而二階導數不為0的點,一定是極值點。

5樓:麴令刑春雪

(1)y=x^3,在0點1階導數、2階導數都=0,但0不是它的極值點(顯然在0的任意鄰域內都不是最大/最小值)(2)二階導不為零說明一階導在該點附近的符號發生改變,所以一定是極值點

(二階導》0說明一階導在該點附近始終單增,而一階導在該點又=0,所以在該點左邊一定一階導<0,在該點右邊一定一階導》0,那麼顯然就是極值點了)

定義域內一階導數為零二階導數也為零的點一定不是極值點?對嗎?

6樓:匿名使用者

(1)y=x^3,在0點1階導數、2階導數都=0,但0不是它的極值點(顯然在0的任意鄰域內都不是最大/最小值)(2)二階導不為零說明一階導在該點附近的符號發生改變,所以一定是極值點

(二階導》0說明一階導在該點附近始終單增,而一階導在該點又=0,所以在該點左邊一定一階導<0,在該點右邊一定一階導》0,那麼顯然就是極值點了)

7樓:匿名使用者

(1)一階導數為零,就已經可能是極值點了。

(2)一階導為零,一般情況下就是極值點,不是極值點的情況,例如:y=x^3(x的三次方),它是沒有極值的,但是它一階導依然為零。在這種情況下,它的二階導也為零。

題中所述,二次導不為零,就一定是極值點。

8樓:老伍

你看看y=x^3

y`=3x^2

y``=6x

x=0 不是極值點

極值點導數為0,導數為0的不一定是極值點是什麼意思?

9樓:demon陌

對於可導函式(影象上各點切線斜率存在),影象是光滑的,極值點切線必是水平的,即極值點切線斜率為0,極值點導數為0。

在導數為0的點的兩側若函式單調性一致,則此點不是極值點,如y=x^3在x=0處導數為0,但在原點兩側函式都是單調遞增,x=0不是極值點。

若f(a)是函式f(x)的極大值或極小值,則a為函式f(x)的極值點,極大值點與極小值點統稱為極值點。極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標。極值點出現在函式的駐點(導數為0的點)或不可導點處(導函式不存在,也可以取得極值,此時駐點不存在)。

10樓:關鍵他是我孫子

因為極值點的判斷需要滿足兩個條件:

1、極值點不但導數為0

2、極值點的左右的導數的符號一定相反

所以對於極值點而言,極值點的導數不一定是0,可能是不可導點比方說f(x)=|x|,這個函式,x=0是極小值點,但是這個函式在x=0點處不可導,極小值點處導數不是0

如果某點的導數為0,但該點的左右導數符號相同,那麼該點不是極值點,可能的情況如下:

一種是像 y=x平方,這個函式在x=0的樣子,這種是極值點另一種是y=x立方,這個函式在x=0的樣子,這種叫做拐點

11樓:吉祿學閣

其實就是充分條件和必要條件問題。

本題是充分條件,從條件到結論正向推理可以,但反過來推不正確。

12樓:boy我最靚

極值點的導數是0,但是導數為零的不一定是極值點,意思就是導數為0的,有可能是極值點,有可能不是極值點,要根據具體的問題判斷。

13樓:唐衛公

極值點 -> 導數為0

從左到右一定成立,從右到左不一定(如y = x^3, x = 0時,導數y' = 3x^2 = 0, 但(0,0)不是極值點)

函式在某區間上恆單調則在該區間上無極值點。 極值點肯定是出現在先增後減或先減後增時。

多找些例子,並仔細對比影象就容易了。

14樓:匿名使用者

就像導數魏w型曲線 兩邊無限 但導數為零時只有中間三個極值 並不是最值

一階導等於零,二階導等於零,三階導不等於零那麼這個點是極值點嗎(求詳細證明)

15樓:

不是極值點。可用泰勒來證明。

在x0處展開為:

f(x)=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)²/2!+f"'(x0)(x-x0)³/3!+.....

因為f'(x0)=f"(x0)=0, 故得:

f(x)-f(x0)=f"'(x0)(x-x0)³/3!+......

考慮x在x0處左右鄰域,f(x)-f(x0)的符號:

不妨設f"'(x0)>0, 則在x0左鄰域,f"'(x0)(x-x0)³/3!<0; 在右鄰域,f"'(x0)(x-x0)³/3!>0, 因此在

在x0左右鄰域,f(x)-f(x0)的符號由負變正,故x0不是極值點。

同樣若f"'(x0)<0, 也同樣得x0不是極值點。

另外,若三階導等於0,但四階導不等於0,則x0是極值點。

導數等於0說明了什麼

16樓:關鍵他是我孫子

導數等於0表明該函式可能存在極值點。

一階導數等於0只是有極值的必要條件,不是充分條件,也就是說:

有極值的地方,其切線的斜率一定為0;

切線斜率為0的地方,不一定是極值點。

例如,y = x^3, y'=3x^2,當x=0時,y'=0,但x=0並不是極值點。

所以,在一階導數等於0的地方,還必須計算二階導數,才能作出充分的判斷。

擴充套件資料:

一階導數等於0的點是極值點的必要條件,注意是必要條件不是充分條件。

當f'(a)=0且f''(a)=0時,不能通過二階導數判斷是否極值點,可通過泰勒來考慮。

如果三階導數不為,,則不是極值點(就像一階導數不為0不是極值點一樣——但是可能是最值點——主要是在邊界有問題,所以有時候為了避免討論邊界,都限定在開區間中討論,省去很多麻煩);

如果三階導數為0,則考慮4階導數,當4階導數不為0時,是極值點,判斷方法同二階導數;

當4階導數為0時,需考慮5階導數,判斷方法同三階導數。

總體情況是,對於任意一點,最低階的非零導數是奇數階時,不是極值點;最低階的非零導數是偶數階時,是極值點,可以通過符號判斷是極大值還是極小值。

極值的第一充分條件是:

f(x)在x處可導且導數等於0 (或者f(x)在x點連續但是導數不存在)

1、若經過x 從小往大經過x 一階導數由正到負,則f(x) 為極大值點。

2、 反之為極小值點。

3、不變號不是極值點。

17樓:崎嶇以尋壑

導數等於0說明函式在此處變化率為0,但不能說明在此處取得極值點。比如y=x³,y'=3x²,x=0時導數為0但x=0並不是極值點。

18樓:匿名使用者

函式的導數等於零的點,該點的切線的斜率為零.即該點的切線是一水平直線.

這樣點一般都是位於函式影象曲線的極大值 或極小值.

所以,函式的導數等於零的點,函式可能取得極大指 或 極小值(也可能是最大指 或 最小值).

19樓:意識

說明函式值恆為一個固定常數

20樓:demon陌

表明該函式可能存在極值點。

一階導數等於0只是有極值的必要條件,不是充分條件,也就是說:

有極值的地方,其切線的斜率一定為0;

切線斜率為0的地方,不一定是極值點.

例如,y = x^3,y'=3x^2,當x=0時,y'=0,但x=0並不是極值點。

所以,在一階導數等於0的地方,還必須計算二階導數,才能作出充分的判斷。

舉例說明:

f(x)=x³,它的導數為f′(x)=3x²。

x=0是臨界點。那麼,究竟是不是極值點呢?我們再看下x=0左右兩側的斜率。

其實不用畫圖,直接取兩個值測試即可。

取x=-1,f′(x)>0

取x=2,f′(x)>0

斜率一直為正,所以x=0是個水平拐點。

y的二階導數等於y的一階導數加x求通解

假面 具體回答如下 y y x 特徵方程 r 2 r 0 r 1,r 0 因此齊次通解是 y c1 c2e x 觀察得特解是 y 1 2x 2 x 因此通解是 y c1 c2e x 1 2x 2 x導數的意義 不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則...

偏導數怎麼求,一階偏導數怎麼求?

我是一個麻瓜啊 當函式 z f x,y 在 x0,y0 的兩個偏導數 f x x0,y0 與 f y x0,y0 都存在時,我們稱 f x,y 在 x0,y0 處可導。如果函式 f x,y 在域 d 的每一點均可導,那麼稱函式 f x,y 在域 d 可導。此時,對應於域 d 的每一點 x,y 必有一...

求函式z ln x lny 的一階偏導數

可用全微法來求 z in x iny dz dx dy y x lny 2即z對x的偏導 1 x iny 2 z對y的偏導 1 y x iny 2。二元函式z ln x y 一階偏導數為zx 1 x y zy 1 x y 二階偏導數為zxx 1 x y zyy 1 x y 混合偏導數zxy zyx ...